92 resultados para modal logic
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The Logic of Proofs~LP, introduced by Artemov, encodes the same reasoning as the modal logic~S4 using proofs explicitly present in the language. In particular, Artemov showed that three operations on proofs (application~$\cdot$, positive introspection~!, and sum~+) are sufficient to mimic provability concealed in S4~modality. While the first two operations go back to G{\"o}del, the exact role of~+ remained somewhat unclear. In particular, it was not known whether the other two operations are sufficient by themselves. We provide a positive answer to this question under a very weak restriction on the axiomatization of LP.
Resumo:
A Hennessy-Milner property, relating modal equivalence and bisimulations, is defined for many-valued modal logics that combine a local semantics based on a complete MTL-chain (a linearly ordered commutative integral residuated lattice) with crisp Kripke frames. A necessary and sufficient algebraic condition is then provided for the class of image-finite models of these logics to admit the Hennessy-Milner property. Complete characterizations are obtained in the case of many-valued modal logics based on BL-chains (divisible MTL-chains) that are finite or have universe [0,1], including crisp Lukasiewicz, Gödel, and product modal logics.
Resumo:
Justification logics are refinements of modal logics where modalities are replaced by justification terms. They are connected to modal logics via so-called realization theorems. We present a syntactic proof of a single realization theorem that uniformly connects all the normal modal logics formed from the axioms \$mathsfd\$, \$mathsft\$, \$mathsfb\$, \$mathsf4\$, and \$mathsf5\$ with their justification counterparts. The proof employs cut-free nested sequent systems together with Fitting's realization merging technique. We further strengthen the realization theorem for \$mathsfKB5\$ and \$mathsfS5\$ by showing that the positive introspection operator is superfluous.
Resumo:
Logical theories for representing knowledge are often plagued by the so-called Logical Omniscience Problem. The problem stems from the clash between the desire to model rational agents, which should be capable of simple logical inferences, and the fact that any logical inference, however complex, almost inevitably consists of inference steps that are simple enough. This contradiction points to the fruitlessness of trying to solve the Logical Omniscience Problem qualitatively if the rationality of agents is to be maintained. We provide a quantitative solution to the problem compatible with the two important facets of the reasoning agent: rationality and resource boundedness. More precisely, we provide a test for the logical omniscience problem in a given formal theory of knowledge. The quantitative measures we use are inspired by the complexity theory. We illustrate our framework with a number of examples ranging from the traditional implicit representation of knowledge in modal logic to the language of justification logic, which is capable of spelling out the internal inference process. We use these examples to divide representations of knowledge into logically omniscient and not logically omniscient, thus trying to determine how much information about the reasoning process needs to be present in a theory to avoid logical omniscience.
Resumo:
Starting off from the usual language of modal logic for multi-agent systems dealing with the agents’ knowledge/belief and common knowledge/belief we define so-called epistemic Kripke structures for intu- itionistic (common) knowledge/belief. Then we introduce corresponding deductive systems and show that they are sound and complete with respect to these semantics.
Resumo:
Justification Logic studies epistemic and provability phenomena by introducing justifications/proofs into the language in the form of justification terms. Pure justification logics serve as counterparts of traditional modal epistemic logics, and hybrid logics combine epistemic modalities with justification terms. The computational complexity of pure justification logics is typically lower than that of the corresponding modal logics. Moreover, the so-called reflected fragments, which still contain complete information about the respective justification logics, are known to be in~NP for a wide range of justification logics, pure and hybrid alike. This paper shows that, under reasonable additional restrictions, these reflected fragments are NP-complete, thereby proving a matching lower bound. The proof method is then extended to provide a uniform proof that the corresponding full pure justification logics are $\Pi^p_2$-hard, reproving and generalizing an earlier result by Milnikel.