4 resultados para mobility prediction

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Location prediction has attracted a significant amount of research effort. Being able to predict users’ movement benefits a wide range of communication systems, including location-based service/applications, mobile access control, mobile QoS provision, and resource management for mobile computation and storage management. In this demo, we present MOBaaS, which is a cloudified Mobility and Bandwidth prediction services that can be instantiated, deployed, and disposed on-demand. Mobility prediction of MOBaaS provides location predictions of a single/group user equipments (UEs) in a future moment. This information can be used for self-adaptation procedures and optimal network function configuration during run-time operations. We demonstrate an example of real-time mobility prediction service deployment running on OpenStack platform, and the potential benefits it bring to other invoking services.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Mobile Edge Computing enables the deployment of services, applications, content storage and processing in close proximity to mobile end users. This highly distributed computing environment can be used to provide ultra-low latency, precise positional awareness and agile applications, which could significantly improve user experience. In order to achieve this, it is necessary to consider next-generation paradigms such as Information-Centric Networking and Cloud Computing, integrated with the upcoming 5th Generation networking access. A cohesive end-to-end architecture is proposed, fully exploiting Information-Centric Networking together with the Mobile Follow-Me Cloud approach, for enhancing the migration of content-caches located at the edge of cloudified mobile networks. The chosen content-relocation algorithm attains content-availability improvements of up to 500 when a mobile user performs a request and compared against other existing solutions. The performed evaluation considers a realistic core-network, with functional and non-functional measurements, including the deployment of the entire system, computation and allocation/migration of resources. The achieved results reveal that the proposed architecture is beneficial not only from the users’ perspective but also from the providers point-of-view, which may be able to optimize their resources and reach significant bandwidth savings.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Long Term Evolution (LTE) represents the fourth generation (4G) technology which is capable of providing high data rates as well as support of high speed mobility. The EU FP7 Mobile Cloud Networking (MCN) project integrates the use of cloud computing concepts in LTE mobile networks in order to increase LTE's performance. In this way a shared distributed virtualized LTE mobile network is built that can optimize the utilization of virtualized computing, storage and network resources and minimize communication delays. Two important features that can be used in such a virtualized system to improve its performance are the user mobility and bandwidth prediction. This paper introduces the architecture and challenges that are associated with user mobility and bandwidth prediction approaches in virtualized LTE systems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recently telecommunication industry benefits from infrastructure sharing, one of the most fundamental enablers of cloud computing, leading to emergence of the Mobile Virtual Network Operator (MVNO) concept. The most momentous intents by this approach are the support of on-demand provisioning and elasticity of virtualized mobile network components, based on data traffic load. To realize it, during operation and management procedures, the virtualized services need be triggered in order to scale-up/down or scale-out/in an instance. In this paper we propose an architecture called MOBaaS (Mobility and Bandwidth Availability Prediction as a Service), comprising two algorithms in order to predict user(s) mobility and network link bandwidth availability, that can be implemented in cloud based mobile network structure and can be used as a support service by any other virtualized mobile network services. MOBaaS can provide prediction information in order to generate required triggers for on-demand deploying, provisioning, disposing of virtualized network components. This information can be used for self-adaptation procedures and optimal network function configuration during run-time operation, as well. Through the preliminary experiments with the prototype implementation on the OpenStack platform, we evaluated and confirmed the feasibility and the effectiveness of the prediction algorithms and the proposed architecture.