22 resultados para mobile phone
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Source of funding in experimental studies of mobile phone use on health: Update of systematic review
Resumo:
A previous review showed that among 59 studies published in 1995–2005, industry-funded studies were least likely to report effects of controlled exposure to mobile phone radiation on health-related outcomes. We updated literature searches in 2005–2009 and extracted data on funding, conflicts of interest and results. Of 75 additional studies 12% were industry-funded, 44% had public and 19% mixed funding; funding was unclear in 25%. Previous findings were confirmed: industry-sponsored studies were least likely to report results suggesting effects. Interestingly, the proportion of studies indicating effects declined in 1995–2009, regardless of funding source. Source of funding and conflicts of interest are important in this field of research.
Resumo:
Advances in the area of mobile and wireless communication for healthcare (m-Health) along with the improvements in information science allow the design and development of new patient-centric models for the provision of personalised healthcare services, increase of patient independence and improvement of patient's self-control and self-management capabilities. This paper comprises a brief overview of the m-Health applications towards the self-management of individuals with diabetes mellitus and the enhancement of their quality of life. Furthermore, the design and development of a mobile phone application for Type 1 Diabetes Mellitus (T1DM) self-management is presented. The technical evaluation of the application, which permits the management of blood glucose measurements, blood pressure measurements, insulin dosage, food/drink intake and physical activity, has shown that the use of the mobile phone technologies along with data analysis methods might improve the self-management of T1DM.
Resumo:
A growing body of literature addresses possible health effects of mobile phone use in children and adolescents by relying on the study participants' retrospective reconstruction of mobile phone use. In this study, we used data from the international case-control study CEFALO to compare self-reported with objectively operator-recorded mobile phone use. The aim of the study was to assess predictors of level of mobile phone use as well as factors that are associated with overestimating own mobile phone use. For cumulative number and duration of calls as well as for time since first subscription we calculated the ratio of self-reported to operator-recorded mobile phone use. We used multiple linear regression models to assess possible predictors of the average number and duration of calls per day and logistic regression models to assess possible predictors of overestimation. The cumulative number and duration of calls as well as the time since first subscription of mobile phones were overestimated on average by the study participants. Likelihood to overestimate number and duration of calls was not significantly different for controls compared to cases (OR=1.1, 95%-CI: 0.5 to 2.5 and OR=1.9, 95%-CI: 0.85 to 4.3, respectively). However, likelihood to overestimate was associated with other health related factors such as age and sex. As a consequence, such factors act as confounders in studies relying solely on self-reported mobile phone use and have to be considered in the analysis.
Resumo:
It has been hypothesized that children and adolescents might be more vulnerable to possible health effects from mobile phone exposure than adults. We investigated whether mobile phone use is associated with brain tumor risk among children and adolescents.
Resumo:
Whether the use of mobile phones is a risk factor for brain tumors in adolescents is currently being studied. Case--control studies investigating this possible relationship are prone to recall error and selection bias. We assessed the potential impact of random and systematic recall error and selection bias on odds ratios (ORs) by performing simulations based on real data from an ongoing case--control study of mobile phones and brain tumor risk in children and adolescents (CEFALO study). Simulations were conducted for two mobile phone exposure categories: regular and heavy use. Our choice of levels of recall error was guided by a validation study that compared objective network operator data with the self-reported amount of mobile phone use in CEFALO. In our validation study, cases overestimated their number of calls by 9% on average and controls by 34%. Cases also overestimated their duration of calls by 52% on average and controls by 163%. The participation rates in CEFALO were 83% for cases and 71% for controls. In a variety of scenarios, the combined impact of recall error and selection bias on the estimated ORs was complex. These simulations are useful for the interpretation of previous case-control studies on brain tumor and mobile phone use in adults as well as for the interpretation of future studies on adolescents.
Resumo:
OBJECTIVES: There is concern regarding the possible health effects of cellular telephone use. We examined whether the source of funding of studies of the effects of low-level radiofrequency radiation is associated with the results of studies. We conducted a systematic review of studies of controlled exposure to radiofrequency radiation with health-related outcomes (electroencephalogram, cognitive or cardiovascular function, hormone levels, symptoms, and subjective well-being). DATA SOURCES: We searched EMBASE, Medline, and a specialist database in February 2005 and scrutinized reference lists from relevant publications. DATA EXTRACTION: Data on the source of funding, study design, methodologic quality, and other study characteristics were extracted. The primary outcome was the reporting of at least one statistically significant association between the exposure and a health-related outcome. Data were analyzed using logistic regression models. DATA SYNTHESIS: Of 59 studies, 12 (20%) were funded exclusively by the telecommunications industry, 11 (19%) were funded by public agencies or charities, 14 (24%) had mixed funding (including industry), and in 22 (37%) the source of funding was not reported. Studies funded exclusively by industry reported the largest number of outcomes, but were least likely to report a statistically significant result: The odds ratio was 0.11 (95% confidence interval, 0.02-0.78), compared with studies funded by public agencies or charities. This finding was not materially altered in analyses adjusted for the number of outcomes reported, study quality, and other factors. CONCLUSIONS: The interpretation of results from studies of health effects of radiofrequency radiation should take sponsorship into account.
Resumo:
The increasing deployment of mobile communication base stations led to an increasing demand for epidemiological studies on possible health effects of radio frequency emissions. The methodological challenges of such studies have been critically evaluated by a panel of scientists in the fields of radiofrequency engineering/dosimetry and epidemiology. Strengths and weaknesses of previous studies have been identified. Dosimetric concepts and crucial aspects in exposure assessment were evaluated in terms of epidemiological studies on different types of outcomes. We conclude that in principle base station epidemiological studies are feasible. However, the exposure contributions from all relevant radio frequency sources have to be taken into account. The applied exposure assessment method should be piloted and validated. Short to medium term effects on physiology or health related quality of life are best investigated by cohort studies. For long term effects, groups with a potential for high exposure need to first be identified; for immediate effect, human laboratory studies are the preferred approach.
Resumo:
Background: Diabetes mellitus is spreading throughout the world and diabetic individuals have been shown to often assess their food intake inaccurately; therefore, it is a matter of urgency to develop automated diet assessment tools. The recent availability of mobile phones with enhanced capabilities, together with the advances in computer vision, have permitted the development of image analysis apps for the automated assessment of meals. GoCARB is a mobile phone-based system designed to support individuals with type 1 diabetes during daily carbohydrate estimation. In a typical scenario, the user places a reference card next to the dish and acquires two images using a mobile phone. A series of computer vision modules detect the plate and automatically segment and recognize the different food items, while their 3D shape is reconstructed. Finally, the carbohydrate content is calculated by combining the volume of each food item with the nutritional information provided by the USDA Nutrient Database for Standard Reference. Objective: The main objective of this study is to assess the accuracy of the GoCARB prototype when used by individuals with type 1 diabetes and to compare it to their own performance in carbohydrate counting. In addition, the user experience and usability of the system is evaluated by questionnaires. Methods: The study was conducted at the Bern University Hospital, “Inselspital” (Bern, Switzerland) and involved 19 adult volunteers with type 1 diabetes, each participating once. Each study day, a total of six meals of broad diversity were taken from the hospital’s restaurant and presented to the participants. The food items were weighed on a standard balance and the true amount of carbohydrate was calculated from the USDA nutrient database. Participants were asked to count the carbohydrate content of each meal independently and then by using GoCARB. At the end of each session, a questionnaire was completed to assess the user’s experience with GoCARB. Results: The mean absolute error was 27.89 (SD 38.20) grams of carbohydrate for the estimation of participants, whereas the corresponding value for the GoCARB system was 12.28 (SD 9.56) grams of carbohydrate, which was a significantly better performance ( P=.001). In 75.4% (86/114) of the meals, the GoCARB automatic segmentation was successful and 85.1% (291/342) of individual food items were successfully recognized. Most participants found GoCARB easy to use. Conclusions: This study indicates that the system is able to estimate, on average, the carbohydrate content of meals with higher accuracy than individuals with type 1 diabetes can. The participants thought the app was useful and easy to use. GoCARB seems to be a well-accepted supportive mHealth tool for the assessment of served-on-a-plate meals.
Resumo:
BACKGROUND: Radio-frequency electromagnetic fields (RF EMF) of mobile communication systems are widespread in the living environment, yet their effects on humans are uncertain despite a growing body of literature. OBJECTIVES: We investigated the influence of a Universal Mobile Telecommunications System (UMTS) base station-like signal on well-being and cognitive performance in subjects with and without self-reported sensitivity to RF EMF. METHODS: We performed a controlled exposure experiment (45 min at an electric field strength of 0, 1, or 10 V/m, incident with a polarization of 45 degrees from the left back side of the subject, weekly intervals) in a randomized, double-blind crossover design. A total of 117 healthy subjects (33 self-reported sensitive, 84 nonsensitive subjects) participated in the study. We assessed well-being, perceived field strength, and cognitive performance with questionnaires and cognitive tasks and conducted statistical analyses using linear mixed models. Organ-specific and brain tissue-specific dosimetry including uncertainty and variation analysis was performed. RESULTS: In both groups, well-being and perceived field strength were not associated with actual exposure levels. We observed no consistent condition-induced changes in cognitive performance except for two marginal effects. At 10 V/m we observed a slight effect on speed in one of six tasks in the sensitive subjects and an effect on accuracy in another task in nonsensitive subjects. Both effects disappeared after multiple end point adjustment. CONCLUSIONS: In contrast to a recent Dutch study, we could not confirm a short-term effect of UMTS base station-like exposure on well-being. The reported effects on brain functioning were marginal and may have occurred by chance. Peak spatial absorption in brain tissue was considerably smaller than during use of a mobile phone. No conclusions can be drawn regarding short-term effects of cell phone exposure or the effects of long-term base station-like exposure on human health.
Resumo:
A rising concern exists that with the widespread use of mobile communication technologies, the incidence of brain tumours may increase. On the basis of data from the Swiss national mortality registry from 1969 to 2002, annual age-standardized brain tumour mortality rates per 100,000 person-years were calculated using the European standard population. Time trend analyses were performed by the Poisson regression for six different age groups in men and women separately. The study period was divided into two intervals: before and after 1987, when the analogue mobile technology was introduced in Switzerland. Age-standardized brain tumour mortality rates ranged between 3.7 and 6.7 for men and 2.5 and 4.4 for women per 100,000 person-years. For the whole study period, a significant increase in brain tumour mortality was observed for men and women in the older age groups (60-74 and 75+ years) but not in the younger ones in whom mobile phone use was more prevalent. Time trend analyses restricted to data from 1987 onwards revealed relatively stable brain tumour mortality rates in all age groups. For instance, the annual change in brain tumour mortality rate for the 45-59-year age group was -0.3% (95% confidence interval: -1.7; 1.1) for men and -0.4% (95% confidence interval:-2.2; 1.3) for women. We conclude that after the introduction of mobile phone technology in Switzerland, brain tumour mortality rates remained stable in all age groups. Our results suggest that mobile phone use is not a strong risk factor in the short term for mortality from brain tumours. Ecological analyses like this, however, are limited in their ability to reveal potentially small increases in risk for diseases with a long latency period.
Resumo:
We developed a geospatial model that calculates ambient high-frequency electromagnetic field (HF-EMF) strengths of stationary transmission installations such as mobile phone base stations and broadcast transmitters with high spatial resolution in the order of 1 m. The model considers the location and transmission patterns of the transmitters, the three-dimensional topography, and shielding effects by buildings. The aim of the present study was to assess the suitability of the model for exposure monitoring and for epidemiological research. We modeled time-averaged HF-EMF strengths for an urban area in the city of Basel as well as for a rural area (Bubendorf). To compare modeling with measurements, we selected 20 outdoor measurement sites in Basel and 18 sites in Bubendorf. We calculated Pearson's correlation coefficients between modeling and measurements. Chance-corrected agreement was evaluated by weighted Cohen's kappa statistics for three exposure categories. Correlation between measurements and modeling of the total HF-EMF strength was 0.67 (95% confidence interval (CI): 0.33-0.86) in the city of Basel and 0.77 (95% CI: 0.46-0.91) in the rural area. In both regions, kappa coefficients between measurements and modeling were 0.63 and 0.77 for the total HF-EMF strengths and for all mobile phone frequency bands. First evaluation of our geospatial model yielded substantial agreement between modeling and measurements. However, before the model can be applied for future epidemiologic research, additional validation studies focusing on indoor values are needed to improve model validity.Journal of Exposure Science and Environmental Epidemiology (2008) 18, 183-191; doi:10.1038/sj.jes.7500575; published online 4 April 2007.
Resumo:
This article is a systematic review of whether everyday exposure to radiofrequency electromagnetic field (RF-EMF) causes symptoms, and whether some individuals are able to detect low-level RF-EMF (below the ICNIRP [International Commission on Non-Ionizing Radiation Protection] guidelines). Peer-reviewed articles published before August 2007 were identified by means of a systematic literature search. Meta-analytic techniques were used to pool the results from studies investigating the ability to discriminate active from sham RF-EMF exposure. RF-EMF discrimination was investigated in seven studies including a total of 182 self-declared electromagnetic hypersensitive (EHS) individuals and 332 non-EHS individuals. The pooled correct field detection rate was 4.2% better than expected by chance (95% CI: -2.1 to 10.5). There was no evidence that EHS individuals could detect presence or absence of RF-EMF better than other persons. There was little evidence that short-term exposure to a mobile phone or base station causes symptoms based on the results of eight randomized trials investigating 194 EHS and 346 non-EHS individuals in a laboratory. Some of the trials provided evidence for the occurrence of nocebo effects. In population based studies an association between symptoms and exposure to RF-EMF in the everyday environment was repeatedly observed. This review showed that the large majority of individuals who claims to be able to detect low level RF-EMF are not able to do so under double-blind conditions. If such individuals exist, they represent a small minority and have not been identified yet. The available observational studies do not allow differentiating between biophysical from EMF and nocebo effects.