23 resultados para minimization
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In this paper we present a new population-based method for the design of bone fixation plates. Standard pre-contoured plates are designed based on the mean shape of a certain population. We propose a computational process to design implants while reducing the amount of required intra-operative shaping, thus reducing the mechanical stresses applied to the plate. A bending and torsion model was used to measure and minimize the necessary intra-operative deformation. The method was applied and validated on a population of 200 femurs that was further augmented with a statistical shape model. The obtained results showed substantial reduction in the bending and torsion needed to shape the new design into any bone in the population when compared to the standard mean-based plates.
Resumo:
Similarity measure is one of the main factors that affect the accuracy of intensity-based 2D/3D registration of X-ray fluoroscopy to CT images. Information theory has been used to derive similarity measure for image registration leading to the introduction of mutual information, an accurate similarity measure for multi-modal and mono-modal image registration tasks. However, it is known that the standard mutual information measure only takes intensity values into account without considering spatial information and its robustness is questionable. Previous attempt to incorporate spatial information into mutual information either requires computing the entropy of higher dimensional probability distributions, or is not robust to outliers. In this paper, we show how to incorporate spatial information into mutual information without suffering from these problems. Using a variational approximation derived from the Kullback-Leibler bound, spatial information can be effectively incorporated into mutual information via energy minimization. The resulting similarity measure has a least-squares form and can be effectively minimized by a multi-resolution Levenberg-Marquardt optimizer. Experimental results are presented on datasets of two applications: (a) intra-operative patient pose estimation from a few (e.g. 2) calibrated fluoroscopic images, and (b) post-operative cup alignment estimation from single X-ray radiograph with gonadal shielding.
Resumo:
Intra-session network coding has been shown to offer significant gains in terms of achievable throughput and delay in settings where one source multicasts data to several clients. In this paper, we consider a more general scenario where multiple sources transmit data to sets of clients over a wireline overlay network. We propose a novel framework for efficient rate allocation in networks where intermediate network nodes have the opportunity to combine packets from different sources using randomized network coding. We formulate the problem as the minimization of the average decoding delay in the client population and solve it with a gradient-based stochastic algorithm. Our optimized inter-session network coding solution is evaluated in different network topologies and is compared with basic intra-session network coding solutions. Our results show the benefits of proper coding decisions and effective rate allocation for lowering the decoding delay when the network is used by concurrent multicast sessions.
Resumo:
We present an automatic method to segment brain tissues from volumetric MRI brain tumor images. The method is based on non-rigid registration of an average atlas in combination with a biomechanically justified tumor growth model to simulate soft-tissue deformations caused by the tumor mass-effect. The tumor growth model, which is formulated as a mesh-free Markov Random Field energy minimization problem, ensures correspondence between the atlas and the patient image, prior to the registration step. The method is non-parametric, simple and fast compared to other approaches while maintaining similar accuracy. It has been evaluated qualitatively and quantitatively with promising results on eight datasets comprising simulated images and real patient data.
Resumo:
Hand transplantation has been indicated in selective patients after traumatic upper extremity amputation and only performed in a few centers around the world for the last decade. In comparison to solid organ transplantation, there is a challenge to overcome the host immunological barrier due to complex antigenicity of the different included tissues, the skin being the most susceptible to rejection. Patients require lifelong immunosuppression for non life-threatening conditions. Minimization of maintenance immunosuppression represents the key step for promoting wider applicability of hand transplantation. Current research is working towards the understanding mechanisms of composite tissue allograft (CTA) rejection. Worldwide, in 51 patients 72 hands (21 double hand transplants) and once both arms have been successfully transplanted since 1998.
Resumo:
Nonlinear computational analysis of materials showing elasto-plasticity or damage relies on knowledge of their yield behavior and strengths under complex stress states. In this work, a generalized anisotropic quadric yield criterion is proposed that is homogeneous of degree one and takes a convex quadric shape with a smooth transition from ellipsoidal to cylindrical or conical surfaces. If in the case of material identification, the shape of the yield function is not known a priori, a minimization using the quadric criterion will result in the optimal shape among the convex quadrics. The convexity limits of the criterion and the transition points between the different shapes are identified. Several special cases of the criterion for distinct material symmetries such as isotropy, cubic symmetry, fabric-based orthotropy and general orthotropy are presented and discussed. The generality of the formulation is demonstrated by showing its degeneration to several classical yield surfaces like the von Mises, Drucker–Prager, Tsai–Wu, Liu, generalized Hill and classical Hill criteria under appropriate conditions. Applicability of the formulation for micromechanical analyses was shown by transformation of a criterion for porous cohesive-frictional materials by Maghous et al. In order to demonstrate the advantages of the generalized formulation, bone is chosen as an example material, since it features yield envelopes with different shapes depending on the considered length scale. A fabric- and density-based quadric criterion for the description of homogenized material behavior of trabecular bone is identified from uniaxial, multiaxial and torsional experimental data. Also, a fabric- and density-based Tsai–Wu yield criterion for homogenized trabecular bone from in silico data is converted to an equivalent quadric criterion by introduction of a transformation of the interaction parameters. Finally, a quadric yield criterion for lamellar bone at the microscale is identified from a nanoindentation study reported in the literature, thus demonstrating the applicability of the generalized formulation to the description of the yield envelope of bone at multiple length scales.
Resumo:
We consider the problem of fitting a union of subspaces to a collection of data points drawn from one or more subspaces and corrupted by noise and/or gross errors. We pose this problem as a non-convex optimization problem, where the goal is to decompose the corrupted data matrix as the sum of a clean and self-expressive dictionary plus a matrix of noise and/or gross errors. By self-expressive we mean a dictionary whose atoms can be expressed as linear combinations of themselves with low-rank coefficients. In the case of noisy data, our key contribution is to show that this non-convex matrix decomposition problem can be solved in closed form from the SVD of the noisy data matrix. The solution involves a novel polynomial thresholding operator on the singular values of the data matrix, which requires minimal shrinkage. For one subspace, a particular case of our framework leads to classical PCA, which requires no shrinkage. For multiple subspaces, the low-rank coefficients obtained by our framework can be used to construct a data affinity matrix from which the clustering of the data according to the subspaces can be obtained by spectral clustering. In the case of data corrupted by gross errors, we solve the problem using an alternating minimization approach, which combines our polynomial thresholding operator with the more traditional shrinkage-thresholding operator. Experiments on motion segmentation and face clustering show that our framework performs on par with state-of-the-art techniques at a reduced computational cost.
Resumo:
In this work, we propose a distributed rate allocation algorithm that minimizes the average decoding delay for multimedia clients in inter-session network coding systems. We consider a scenario where the users are organized in a mesh network and each user requests the content of one of the available sources. We propose a novel distributed algorithm where network users determine the coding operations and the packet rates to be requested from the parent nodes, such that the decoding delay is minimized for all clients. A rate allocation problem is solved by every user, which seeks the rates that minimize the average decoding delay for its children and for itself. Since this optimization problem is a priori non-convex, we introduce the concept of equivalent packet flows, which permits to estimate the expected number of packets that every user needs to collect for decoding. We then decompose our original rate allocation problem into a set of convex subproblems, which are eventually combined to obtain an effective approximate solution to the delay minimization problem. The results demonstrate that the proposed scheme eliminates the bottlenecks and reduces the decoding delay experienced by users with limited bandwidth resources. We validate the performance of our distributed rate allocation algorithm in different video streaming scenarios using the NS-3 network simulator. We show that our system is able to take benefit of inter-session network coding for simultaneous delivery of video sessions in networks with path diversity.
Resumo:
Aging societies suffer from an increasing incidence of bone fractures. Bone strength depends on the amount of mineral measured by clinical densitometry, but also on the micromechanical properties of the bone hierarchical organization. A good understanding has been reached for elastic properties on several length scales, but up to now there is a lack of reliable postyield data on the lower length scales. In order to be able to describe the behavior of bone at the microscale, an anisotropic elastic-viscoplastic damage model was developed using an eccentric generalized Hill criterion and nonlinear isotropic hardening. The model was implemented as a user subroutine in Abaqus and verified using single element tests. A FE simulation of microindentation in lamellar bone was finally performed show-ing that the new constitutive model can capture the main characteristics of the indentation response of bone. As the generalized Hill criterion is limited to elliptical and cylindrical yield surfaces and the correct shape for bone is not known, a new yield surface was developed that takes any convex quadratic shape. The main advantage is that in the case of material identification the shape of the yield surface does not have to be anticipated but a minimization results in the optimal shape among all convex quadrics. The generality of the formulation was demonstrated by showing its degeneration to classical yield surfaces. Also, existing yield criteria for bone at multiple length scales were converted to the quadric formulation. Then, a computational study to determine the influence of yield surface shape and damage on the in-dentation response of bone using spherical and conical tips was performed. The constitutive model was adapted to the quadric criterion and yield surface shape and critical damage were varied. They were shown to have a major impact on the indentation curves. Their influence on indentation modulus, hardness, their ratio as well as the elastic to total work ratio were found to be very well described by multilinear regressions for both tip shapes. For conical tips, indentation depth was not a significant fac-tor, while for spherical tips damage was insignificant. All inverse methods based on microindentation suffer from a lack of uniqueness of the found material properties in the case of nonlinear material behavior. Therefore, monotonic and cyclic micropillar com-pression tests in a scanning electron microscope allowing a straightforward interpretation comple-mented by microindentation and macroscopic uniaxial compression tests were performed on dry ovine bone to identify modulus, yield stress, plastic deformation, damage accumulation and failure mecha-nisms. While the elastic properties were highly consistent, the postyield deformation and failure mech-anisms differed between the two length scales. A majority of the micropillars showed a ductile behavior with strain hardening until failure by localization in a slip plane, while the macroscopic samples failed in a quasi-brittle fashion with microcracks coalescing into macroscopic failure surfaces. In agreement with a proposed rheological model, these experiments illustrate a transition from a ductile mechanical behavior of bone at the microscale to a quasi-brittle response driven by the growth of preexisting cracks along interfaces or in the vicinity of pores at the macroscale. Subsequently, a study was undertaken to quantify the topological variability of indentations in bone and examine its relationship with mechanical properties. Indentations were performed in dry human and ovine bone in axial and transverse directions and their topography measured by AFM. Statistical shape modeling of the residual imprint allowed to define a mean shape and describe the variability with 21 principal components related to imprint depth, surface curvature and roughness. The indentation profile of bone was highly consistent and free of any pile up. A few of the topological parameters, in particular depth, showed significant correlations to variations in mechanical properties, but the cor-relations were not very strong or consistent. We could thus verify that bone is rather homogeneous in its micromechanical properties and that indentation results are not strongly influenced by small de-viations from the ideal case. As the uniaxial properties measured by micropillar compression are in conflict with the current literature on bone indentation, another dissipative mechanism has to be present. The elastic-viscoplastic damage model was therefore extended to viscoelasticity. The viscoelastic properties were identified from macroscopic experiments, while the quasistatic postelastic properties were extracted from micropillar data. It was found that viscoelasticity governed by macroscale properties has very little influence on the indentation curve and results in a clear underestimation of the creep deformation. Adding viscoplasticity leads to increased creep, but hardness is still highly overestimated. It was possible to obtain a reasonable fit with experimental indentation curves for both Berkovich and spherical indenta-tion when abandoning the assumption of shear strength being governed by an isotropy condition. These results remain to be verified by independent tests probing the micromechanical strength prop-erties in tension and shear. In conclusion, in this thesis several tools were developed to describe the complex behavior of bone on the microscale and experiments were performed to identify its material properties. Micropillar com-pression highlighted a size effect in bone due to the presence of preexisting cracks and pores or inter-faces like cement lines. It was possible to get a reasonable fit between experimental indentation curves using different tips and simulations using the constitutive model and uniaxial properties measured by micropillar compression. Additional experimental work is necessary to identify the exact nature of the size effect and the mechanical role of interfaces in bone. Deciphering the micromechanical behavior of lamellar bone and its evolution with age, disease and treatment and its failure mechanisms on several length scales will help preventing fractures in the elderly in the future.
Resumo:
In this thesis, we develop an adaptive framework for Monte Carlo rendering, and more specifically for Monte Carlo Path Tracing (MCPT) and its derivatives. MCPT is attractive because it can handle a wide variety of light transport effects, such as depth of field, motion blur, indirect illumination, participating media, and others, in an elegant and unified framework. However, MCPT is a sampling-based approach, and is only guaranteed to converge in the limit, as the sampling rate grows to infinity. At finite sampling rates, MCPT renderings are often plagued by noise artifacts that can be visually distracting. The adaptive framework developed in this thesis leverages two core strategies to address noise artifacts in renderings: adaptive sampling and adaptive reconstruction. Adaptive sampling consists in increasing the sampling rate on a per pixel basis, to ensure that each pixel value is below a predefined error threshold. Adaptive reconstruction leverages the available samples on a per pixel basis, in an attempt to have an optimal trade-off between minimizing the residual noise artifacts and preserving the edges in the image. In our framework, we greedily minimize the relative Mean Squared Error (rMSE) of the rendering by iterating over sampling and reconstruction steps. Given an initial set of samples, the reconstruction step aims at producing the rendering with the lowest rMSE on a per pixel basis, and the next sampling step then further reduces the rMSE by distributing additional samples according to the magnitude of the residual rMSE of the reconstruction. This iterative approach tightly couples the adaptive sampling and adaptive reconstruction strategies, by ensuring that we only sample densely regions of the image where adaptive reconstruction cannot properly resolve the noise. In a first implementation of our framework, we demonstrate the usefulness of our greedy error minimization using a simple reconstruction scheme leveraging a filterbank of isotropic Gaussian filters. In a second implementation, we integrate a powerful edge aware filter that can adapt to the anisotropy of the image. Finally, in a third implementation, we leverage auxiliary feature buffers that encode scene information (such as surface normals, position, or texture), to improve the robustness of the reconstruction in the presence of strong noise.
Resumo:
In this work we solve the uncalibrated photometric stereo problem with lights placed near the scene. We investigate different image formation models and find the one that best fits our observations. Although the devised model is more complex than its far-light counterpart, we show that under a global linear ambiguity the reconstruction is possible up to a rotation and scaling, which can be easily fixed. We also propose a solution for reconstructing the normal map, the albedo, the light positions and the light intensities of a scene given only a sequence of near-light images. This is done in an alternating minimization framework which first estimates both the normals and the albedo, and then the light positions and intensities. We validate our method on real world experiments and show that a near-light model leads to a significant improvement in the surface reconstruction compared to the classic distant illumination case.
Resumo:
In this paper we study the problem of blind deconvolution. Our analysis is based on the algorithm of Chan and Wong [2] which popularized the use of sparse gradient priors via total variation. We use this algorithm because many methods in the literature are essentially adaptations of this framework. Such algorithm is an iterative alternating energy minimization where at each step either the sharp image or the blur function are reconstructed. Recent work of Levin et al. [14] showed that any algorithm that tries to minimize that same energy would fail, as the desired solution has a higher energy than the no-blur solution, where the sharp image is the blurry input and the blur is a Dirac delta. However, experimentally one can observe that Chan and Wong's algorithm converges to the desired solution even when initialized with the no-blur one. We provide both analysis and experiments to resolve this paradoxical conundrum. We find that both claims are right. The key to understanding how this is possible lies in the details of Chan and Wong's implementation and in how seemingly harmless choices result in dramatic effects. Our analysis reveals that the delayed scaling (normalization) in the iterative step of the blur kernel is fundamental to the convergence of the algorithm. This then results in a procedure that eludes the no-blur solution, despite it being a global minimum of the original energy. We introduce an adaptation of this algorithm and show that, in spite of its extreme simplicity, it is very robust and achieves a performance comparable to the state of the art.