2 resultados para middle layer

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND: The effect of two different bioabsorbable collagen membranes on bone regeneration was assessed in standardized, membrane-protected calvarial defects in pigs. METHODS: Two standardized defect types (6 x 6 x 6 mm and 9 x 9 x 9 mm) were produced in the calvaria of pigs: empty defects without a membrane (group 1; eight defects per size); defects filled with deproteinized bovine bone mineral (DBBM) without a membrane (group 2; eight defects per size); defects filled with DBBM and covered by a collagen membrane (group 3; eight defects per size); and defects filled with DBBM and covered by a cross-linked collagen membrane (CCM) (group 4; eight defects per size). Sacrifice took place 16 weeks after surgery, and the following parameters were analyzed: descriptive histology; semiquantitative histology (SQH), assessing bone regeneration in the whole defect area; and histomorphometric analysis of the percentage of bone and DBBM in the regenerated area at three different depth levels of the defect. RESULTS: Using SQH, both membrane types resulted in significantly better bone regeneration compared to groups 1 and 2, irrespective of the defect size (P <0.005), with no difference between the two membranes. In the histomorphometric analysis, the layer immediately below the surface exhibited a significantly higher percentage of bone in groups 3 (27%) and 4 (36%) versus the two other groups for the 9 x 9 x 9-mm defects. No such differences were apparent for the 6 x 6 x 6-mm defects or the other two depth levels (bottom and middle layer) for either defect size. CONCLUSIONS: The two collagen membranes tested significantly enhanced bone regeneration, especially in the superficial level of the calvarial bone defects. The prototype CCM did not provide any further advantage in the present animal model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Layer 2/3 (L2/3) pyramidal neurons are the most abundant cells of the neocortex. Despite their key position in the cortical microcircuit, synaptic integration in dendrites of L2/3 neurons is far less understood than in L5 pyramidal cell dendrites, mainly because of the difficulties in obtaining electrical recordings from thin dendrites. Here we directly measured passive and active properties of the apical dendrites of L2/3 neurons in rat brain slices using dual dendritic-somatic patch-clamp recordings and calcium imaging. Unlike L5 cells, L2/3 dendrites displayed little sag in response to long current pulses, which suggests a low density of I(h) in the dendrites and soma. This was also consistent with a slight increase in input resistance with distance from the soma. Brief current injections into the apical dendrite evoked relatively short (half-width 2-4 ms) dendritic spikes that were isolated from the soma for near-threshold currents at sites beyond the middle of the apical dendrite. Regenerative dendritic potentials and large concomitant calcium transients were also elicited by trains of somatic action potentials (APs) above a critical frequency (130 Hz), which was slightly higher than in L5 neurons. Initiation of dendritic spikes was facilitated by backpropagating somatic APs and could cause an additional AP at the soma. As in L5 neurons, we found that distal dendritic calcium transients are sensitive to a long-lasting block by GABAergic inhibition. We conclude that L2/3 pyramidal neurons can generate dendritic spikes, sharing with L5 pyramidal neurons fundamental properties of dendritic excitability and control by inhibition.