7 resultados para microwave oven acid attack
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Biological factors such as saliva, acquired dental pellicle, tooth structure and positioning in relation to soft tissues and tongue are related to dental erosion development. Saliva has been shown to be the most important biological factor in the prevention of dental erosion. It starts acting even before the acid attack, with the increase of the salivary flow rate as a response to the acidic stimuli. This creates a favorable scenario, increasing the buffering system of saliva and effectively diluting and clearing acids on dental surfaces during the erosive challenge. Saliva plays a role in the formation of the acquired dental pellicle, which acts as a perm-selective membrane preventing contact of the acid with the tooth surf aces. The protective level of the pellicle seems to be regulated by its composition, thickness and maturation time. Due to its mineral content, saliva can also prevent demineralization as well as enhance remineralization. However, these preventive and reparative factors of saliva may not be enough against highly erosive challenges, leading to erosion development. The progress rate of erosion can be significantly influenced by the type of dental substrate, occurrence of mechanical and chemical attacks, fluoride exposure, and also by contact with the oral soft tissues and tongue.
Resumo:
Background: High dilutions of various starting materials, e.g. copper sulfate, Hypericum perforatum and sulfur, showed significant differences from controls and amongst different dilution levels in ultraviolet light (UV) transmission [1,2]. Exposure of high dilutions to external physical factors such as UV light or elevated temperature (37°C) also yielded significantly different UV transmissions compared to unexposed dilutions [2,3]. In a study with highland frogs it was shown that animals incubated with thyroxine 30c but not with thyroxine 30c exposed to electromagnetic fields (EMFs) of a microwave oven or mobile phone metamorphosed more slowly than control animals [4]. Aims: The aim was to test whether the EMF of a mobile phone influences the UV absorbance of dilutions of quartz and Atropa belladonna (AB). Methodology: Commercially available dilutions of 6x, 12x, 15x, 30x in H2O and 19% ethanol of quartz (SiO2) and of 4x, 6x, 12x, 15x, 30x in H2O and 19% ethanol of AB were used in the experiments (Weleda AG, Arlesheim, Switzerland). Four samples of each dilution were exposed to the EMF of a mobile phone (Philips, Savvy Dual Band) at 900 MHz with an output of 2 W for 3 h, while control samples (4 of each dilution) were kept in a separate room. Absorbance of the samples in the UV range (from 190 to 340 nm) was measured in a randomized order with a Shimadzu UV-1800 spectrophotometer equipped with an auto sampler. In total 5 separate measurement days will be carried out for quartz and for AB dilutions. The average absorbance from 200 to 340 nm and from 200 to 240 nm was compared among dilution levels using a Kruskal-Wallis test and between exposed and unexposed samples using a Mann-Whitney-U test. Results: Preliminary results after 2 measurement days indicated that for quartz the absorbance of the various dilution levels was different from each other (except 12x and 15x), and that samples exposed to an EMF did not show a difference in UV absorbance from unexposed samples. Preliminary results after one measurement day indicated that for AB the absorbance of the various dilution levels was different from each other. The samples exposed to an EMF did not show a difference in UV absorbance from unexposed samples (except 4x in the range from 200 – 240 nm). Conclusions: These results suggest that exposure of high dilutions of quartz and AB to a mobile phone EMF as used here does not alter UV absorbance of these dilutions. The final results will show whether this holds true.
Resumo:
Slugs and snails are important herbivores in many ecosystems. They differ from other herbivores by their characteristic mucus trail. As the mucus is secreted at the interface between the plants and the herbivores, its chemical composition may play an essential role in plant responses to slug and snail attack. Based on our current knowledge about host-manipulation strategies employed by pathogens and insects, we hypothesized that mollusks may excrete phytohormone-like substances into their mucus. We therefore screened locomotion mucus from thirteen molluscan herbivores for the presence of the plant defense hormones jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA). We found that the locomotion mucus of one slug, Deroceras reticulatum, contained significant amounts of SA, a plant hormone that is known to induce resistance to pathogens and to suppress plant immunity against herbivores. None of the other slugs and snails contained SA or any other hormone in their locomotion mucus. When the mucus of D. reticulatum was applied to wounded leaves of A. thaliana, the promotor of the SA-responsive gene pathogenesis related 1 (PR1) was activated, demonstrating the potential of the mucus to regulate plant defenses. We discuss the potential ecological, agricultural and medical implications of this finding.
Resumo:
Fatty acid derivatives are of central importance for plant immunity against insect herbivores; however, majorregulatory genes and the signals that modulate these defense metabolites are vastly understudied, especiallyin important agro-economic monocot species. Here we show that products and signals derived from a singleZea mays (maize) lipoxygenase (LOX), ZmLOX10, are critical for both direct and indirect defenses to herbiv-ory. We provide genetic evidence that two 13-LOXs, ZmLOX10 and ZmLOX8, specialize in providing substratefor the green leaf volatile (GLV) and jasmonate (JA) biosynthesis pathways, respectively. Supporting the spe-cialization of these LOX isoforms, LOX8 and LOX10 are localized to two distinct cellular compartments, indi-cating that the JA and GLV biosynthesis pathways are physically separated in maize. Reduced expression ofJA biosynthesis genes and diminished levels of JA in lox10 mutants indicate that LOX10-derived signaling isrequired for LOX8-mediated JA. The possible role of GLVs in JA signaling is supported by their ability to par-tially restore wound-induced JA levels in lox10 mutants. The impaired ability of lox10 mutants to produceGLVs and JA led to dramatic reductions in herbivore-induced plant volatiles (HIPVs) and attractiveness toparasitoid wasps. Because LOX10 is under circadian rhythm regulation, this study provides a mechanistic linkto the diurnal regulation of GLVs and HIPVs. GLV-, JA- and HIPV-deficient lox10 mutants display compro-mised resistance to insect feeding, both under laboratory and field conditions, which is strong evidence thatLOX10-dependent metabolites confer immunity against insect attack. Hence, this comprehensive gene toagro-ecosystem study reveals the broad implications of a single LOX isoform in herbivore defense.
Resumo:
Auxin (IAA) is an important regulator of plant development and root differentiation. Although recent studies indicate that salicylic acid (SA) may also be important in this context by interfering with IAA signaling, comparatively little is known about its impact on the plant’s physiology, metabolism, and growth characteristics. Using carbon-11, a short-lived radioisotope (t 1/2 = 20.4 min) administered as 11CO2 to maize plants (B73), we measured changes in these functions using SA and IAA treatments. IAA application decreased total root biomass, though it increased lateral root growth at the expense of primary root elongation. IAA-mediated inhibition of root growth was correlated with decreased 11CO2 fixation, photosystem II (PSII) efficiency, and total leaf carbon export of 11C-photoassimilates and their allocation belowground. Furthermore, IAA application increased leaf starch content. On the other hand, SA application increased total root biomass, 11CO2 fixation, PSII efficiency, and leaf carbon export of 11C-photoassimilates, but it decreased leaf starch content. IAA and SA induction patterns were also examined after root-herbivore attack by Diabrotica virgifera to place possible hormone crosstalk into a realistic environmental context. We found that 4 days after infestation, IAA was induced in the midzone and root tip, whereas SA was induced only in the upper proximal zone of damaged roots. We conclude that antagonistic crosstalk exists between IAA and SA which can affect the development of maize plants, particularly through alteration of the root system’s architecture, and we propose that the integration of both signals may shape the plant’s response to environmental stress.
Resumo:
Plants are important mediators between above- and belowground herbivores. Consequently, interactions between root and shoot defences can have far-reaching impacts on entire food webs. We recently reported that infestation of maize roots by the root feeding larvae of the beetle Diabrotica virgifera virgifera boosts shoot resistance against herbivores and pathogens. Root herbivory also induced DIMBOA levels and primed for enhanced induction of chlorogenic acid, two secondary metabolites that have been associated with biotic stress resistance. Interestingly, ABA emerged as a putative long-distance signal, possibly responsible for this effect. In this addendum, we investigate the role of root-derived ABA in the systemic regulation of aboveground DIMBOA, and the phenolic compounds chlorogenic acid, caffeic and ferulic acid. We discuss the relevance of the plant hormone in relation to defence against the leaf herbivore Spodoptera littoralis. Soil-drench treatment with ABA mimicked root herbivore-induced accumulation of DIMBOA in the leaves. Similarly, ABA mimicked aboveground priming of chlorogenic acid production, resulting in augmented accumulation of this compound upon subsequent shoot attack by S. littoralis. These findings confirm our notion that ABA acts as an important signal in the regulation of aboveground defence upon belowground herbivory. However, based on our previous finding that ABA alone is not sufficient to trigger aboveground resistance against S. littoralis caterpillars, the results suggest that the ABA-inducible effects on DIMBOA and chlorogenic acid are not solely responsible for root herbivore-induced resistance against S. littoralis. Full text HTML PDF
Resumo:
Plants produce large amounts of secondary metabolites in their shoots and roots and store them in specialized secretory structures. Although secondary metabolites and their secretory structures are commonly assumed to have a defensive function, evidence that they benefit plant fitness under herbivore attack is scarce, especially below ground. Here, we tested whether latex secondary metabolites produced by the common dandelion (Taraxacum officinale agg.) decrease the performance of its major native insect root herbivore, the larvae of the common cockchafer (Melolontha melolontha), and benefit plant vegetative and reproductive fitness under M. melolontha attack. Across 17 T. officinale genotypes screened by gas and liquid chromatography, latex concentrations of the sesquiterpene lactone taraxinic acid β-D-glucopyranosyl ester (TA-G) were negatively associated with M. melolontha larval growth. Adding purified TA-G to artificial diet at ecologically relevant concentrations reduced larval feeding. Silencing the germacrene A synthase ToGAS1, an enzyme that was identified to catalyze the first committed step of TA-G biosynthesis, resulted in a 90% reduction of TA-G levels and a pronounced increase in M. melolontha feeding. Transgenic, TA-G-deficient lines were preferred by M. melolontha and suffered three times more root biomass reduction than control lines. In a common garden experiment involving over 2,000 T. officinale individuals belonging to 17 different genotypes, high TA-G concentrations were associated with the maintenance of high vegetative and reproductive fitness under M. melolontha attack. Taken together, our study demonstrates that a latex secondary metabolite benefits plants under herbivore attack, a result that provides a mechanistic framework for root herbivore driven natural selection and evolution of plant defenses below ground.