7 resultados para microscopes.
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
AIM To report on an intraradicular visual test in a simulated clinical setting under different optical conditions. METHODOLOGY Miniaturized visual tests with E-optotypes (bar distance from 0.01 to 0.05 mm) were fixed inside the root canal system of an extracted maxillary molar at different locations: at the orifice, a depth of 5 mm and the apex. The tooth was mounted in a phantom head for a simulated clinical setting. Unaided vision was compared with Galilean loupes (2.5× magnification) with integrated light source and an operating microscope (6× magnification). The influence of the dentists' age within two groups was evaluated: <40 years (n = 9) and ≥40 years (n = 15). RESULTS Some younger dentists were able to identify the E-optotypes at the orifice, but otherwise, natural vision did not reveal any measurable result. With Galilean loupes, the younger dentists <40 years could see a 0.05 mm structure at the root canal orifice, in contrast to the older group ≥40 years. Only the microscope allowed the observation of structures inside the root canal, independent of age. CONCLUSION Unaided vision and Galilean loupes with an integrated light source could not provide any measurable vision inside the root canal, but younger dentists <40 years could detect with Galilean loupes a canal orifice corresponding to the tip of the smallest endodontic instruments. Dentists over 40 years of age were dependent on the microscope to inspect the root canal system.
Resumo:
Transmission electron microscopy has provided most of what is known about the ultrastructural organization of tissues, cells, and organelles. Due to tremendous advances in crystallography and magnetic resonance imaging, almost any protein can now be modeled at atomic resolution. To fully understand the workings of biological "nanomachines" it is necessary to obtain images of intact macromolecular assemblies in situ. Although the resolution power of electron microscopes is on the atomic scale, in biological samples artifacts introduced by aldehyde fixation, dehydration and staining, but also section thickness reduces it to some nanometers. Cryofixation by high pressure freezing circumvents many of the artifacts since it allows vitrifying biological samples of about 200 mum in thickness and immobilizes complex macromolecular assemblies in their native state in situ. To exploit the perfect structural preservation of frozen hydrated sections, sophisticated instruments are needed, e.g., high voltage electron microscopes equipped with precise goniometers that work at low temperature and digital cameras of high sensitivity and pixel number. With them, it is possible to generate high resolution tomograms, i.e., 3D views of subcellular structures. This review describes theory and applications of the high pressure cryofixation methodology and compares its results with those of conventional procedures. Moreover, recent findings will be discussed showing that molecular models of proteins can be fitted into depicted organellar ultrastructure of images of frozen hydrated sections. High pressure freezing of tissue is the base which may lead to precise models of macromolecular assemblies in situ, and thus to a better understanding of the function of complex cellular structures.
Resumo:
In the long run, the widespread use of slide scanners by pathologists requires an adaptation of teaching methods in histology and cytology in order to target these new possibilities of image processing and presentation via the internet. Accordingly, we were looking for a tool with the possibility to teach microscopic anatomy, histology, and cytology of tissue samples which would be able to combine image data from light and electron microscopes independently of microscope suppliers. With the example of a section through the villus of jejunum, we describe here how to process image data from light and electron microscopes in order to get one image-stack which allows a correlation of structures from the microscopic anatomic to the cytological level. With commercially available image-presentation software that we adapted to our needs, we present here a platform which allows for the presentation of this new but also of older material independently of microscope suppliers.
Resumo:
This study presents the results of a series of wool measurements from Bronze Age and Iron Age skins and textiles from Hallstatt, and Bronze Age textiles from Scandinavia and the Balkans. A new method of classification that was set up and applied on mostly mineralised Iron Age material has now been applied to a large body of non-mineralised material from the Bronze and Iron Ages. Three types of microscopes were used and their advantages and disadvantages assessed. The results of the investigation cast new light on sheep breeding and fibre processing in prehistoric Europe, and suggest that different sheep breeds existed in Bronze Age Europe.
Resumo:
While cancer is one of the greatest challenges to public health care, prostate cancer was chosen as cancer model to develop a more accurate imaging assessment than those currently available. Indeed, an efficient imaging technique which considerably improves the sensitivity and specificity of the diagnostic and predicting the cancer behavior would be extremely valuable. The concept of optoacoustic imaging using home-made functionalized gold nanoparticles coupled to an antibody targeting PSMA (prostate specific membrane antigen) was evaluated on different cancer cell lines to demonstrate the specificity of the designed platform. Two commonly used microscopy techniques (indirect fluorescence and scanning electron microscopy) showed their straightforwardness and versatility for the nanoparticle binding investigations regardless the composition of the investigated nanoobjects. Moreover most of the research laboratories and centers are equipped with fluorescence microscopes, so indirect fluorescence using Quantum dots can be used for any active targeting nanocarriers (polymers, ceramics, metals, etc.). The second technique based on backscattered electron is not only limited to gold nanoparticles but also suits for any study of metallic nanoparticles as the electronic density difference between the nanoparticles and binding surface stays high enough. Optoacoustic imaging was finally performed on a 3D cellular model to assess and prove the concept of the developed platform.
Resumo:
OBJECTIVES The aims of the present study in Swiss dental practices were 1) to provide an update on the prevalence of different magnification devices, 2) to examine the relationship between self-assessed and objectively measured visual acuity, and 3) to evaluate the visual performance of dentists in the individually optimized clinical situation of their respective practices. METHODS AND MATERIALS Sixty-nine dentists from 40 randomly selected private practices (n=20, <40 years; n=49, ≥40 years) participated in the study. A questionnaire was provided to evaluate the self-assessed near visual acuity and the experience with magnification devices. The objective near visual acuity was measured under standardized conditions on a negatoscope. The clinical situation, including the use of habitual optical aids, was evaluated with visual tests on a phantom head. RESULTS A total of 64% of the dentists owned a dental loupe: 45% Galilean loupes, 16% Keplerian loupes, and 3% single lens loupes. In total, 19% of the questioned dentists owned a microscope in addition to the loupes. The correlation between the self-assessed and the objective visual performance of the dentists was weak (Spearman rank correlation coefficient=0.25). In the habitual clinical situation, magnification devices (p=0.03) and the dentist's age (p=0.0012) had a significant influence on the visual performance. CONCLUSIONS Many dentists were not aware of their visual handicaps. Optical aids such as loupes or microscopes should be used early enough to compensate for individual or age-related visual deficiencies.