9 resultados para micropylar operculum

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Developmental venous anomalies (DVAs) are associated with epileptic seizures; however, the role of DVA in the epileptogenesis is still not established. Simultaneous interictal electroencephalogram/functional magnetic resonance imaging (EEG/fMRI) recordings provide supplementary information to electroclinical data about the epileptic generators, and thus aid in the differentiation of clinically equivocal epilepsy syndromes. The main objective of our study was to characterize the epileptic network in a patient with DVA and epilepsy by simultaneous EEG/fMRI recordings. A 17-year-old woman with recently emerging generalized tonic-clonic seizures, and atypical generalized discharges, was investigated using simultaneous EEG/fMRI at the university hospital. Previous high-resolution MRI showed no structural abnormalities, except a DVA in the right frontal operculum. Interictal EEG recordings showed atypical generalized discharges, corresponding to positive focal blood oxygen level dependent (BOLD) correlates in the right frontal operculum, a region drained by the DVA. Additionally, widespread cortical bilateral negative BOLD correlates in the frontal and parietal lobes were delineated, resembling a generalized epileptic network. The EEG/fMRI recordings support a right frontal lobe epilepsy, originating in the vicinity of the DVA, propagating rapidly to both frontal and parietal lobes, as expressed on the scalp EEG by secondary bilateral synchrony. The DVA may be causative of focal epilepsies in cases where no concomitant epileptogenic lesions can be detected. Advanced imaging techniques, such as simultaneous EEG/fMRI, may thus aid in the differentiation of clinically equivocal epilepsy syndromes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Focal onset epilepsies most often occur in the temporal lobes. To improve diagnosis and therapy of patients suffering from pharmacoresistant temporal lobe epilepsy it is highly important to better understand the underlying functional and structural networks. In mesial temporal lobe epilepsy (MTLE) widespread functional networks are involved in seizure generation and propagation. In this study we have analyzed the spatial distribution of hemodynamic correlates (HC) to interictal epileptiform discharges on simultaneous EEG/fMRI recordings and relative grey matter volume (rGMV) reductions in 10 patients with MTLE. HC occurred beyond the seizure onset zone in the hippocampus, in the ipsilateral insular/operculum, temporo-polar and lateral neocortex, cerebellum, along the central sulcus and bilaterally in the cingulate gyrus. rGMV reductions were detected in the middle temporal gyrus, inferior temporal gyrus and uncus to the hippocampus, the insula, the posterior cingulate and the anterior lobe of the cerebellum. Overlaps between HC and decreased rGMV were detected along the mesolimbic network ipsilateral to the seizure onset zone. We conclude that interictal epileptic activity in MTLE induces widespread metabolic changes in functional networks involved in MTLE seizure activity. These functional networks are spatially overlapping with areas that show a reduction in relative grey matter volumes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colour pattern diversity can be due to random processes or to natural or sexual selection. Consequently, similarities in colour patterns are not always correlated with common ancestry, but may result from convergent evolution under shared selection pressures or drift. Neolamprologus brichardi and Neolamprologus pulcher have been described as two distinct species based on differences in the arrangement of two dark bars on the operculum. Our study uses DNA sequences of the mitochondrial control region to show that relatedness of haplotypes disagrees with species assignment based on head colour pattern. This suggests repeated parallel evolution of particular stripe patterns. The complete lack of shared haplotypes between populations of the same or different phenotypes reflects strong philopatric behaviour, possibly induced by the cooperative breeding mode in which offspring remain in their natal territory and serve as helpers until they disperse to nearby territories or take over a breeding position. Concordant phylogeographic patterns between N. brichardi/N. pulcher populations and other rock-dwelling cichlids suggest that the same colonization routes have been taken by sympatric species and that these routes were affected by lake level fluctuations in the past. (C) 2007 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: The voluntary control of micturition is believed to be integrated by complex interactions among the brainstem, subcortical areas and cortical areas. Several brain imaging studies using positron emission tomography (PET) have demonstrated that frontal brain areas, the limbic system, the pons and the premotor cortical areas were involved. However, the cortical and subcortical brain areas have not yet been precisely identified and their exact function is not yet completely understood. MATERIALS AND METHODS: This study used functional magnetic resonance imaging (fMRI) to compare brain activity during passive filling and emptying of the bladder. A cathetherism of the bladder was performed in seven healthy subjects (one man and six right-handed women). During scanning, the bladder was alternatively filled and emptied at a constant rate with bladder rincing solution. RESULTS: Comparison between passive filling of the bladder and emptying of the bladder showed an increased brain activity in the right inferior frontal gyrus, cerebellum, symmetrically in the operculum and mesial frontal. Subcortical areas were not evaluated. CONCLUSIONS: Our results suggest that several cortical brain areas are involved in the regulation of micturition.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mirror masked words are embedded into a context that makes them appear as senseless patterns or as strings of unfamiliar letters. Thus, mirror masked words can be shown for several hundreds of milliseconds without being recognised as words. We sought to further investigate effects of nonsconscious reading by monitoring event-related brain potentials (ERPs) while participants observed mirror masked letter strings. ERPs were recorded while participants observed mirror masked words and nonwords. Data of 15 participants was segmented into periods of quasi-stable field topography (microstates). Microstates for masked words and nonwords were compared using randomization tests, statistical parametric scalp maps and Low Resolution Electromagnetic Tomography (LORETA). ERPs to masked words and nonwords showed significant topographic differences between 136 and 256 ms, indicating that stimuli were nonconsciously discriminated. A LORETA model localised sources of activation discriminating between masked words and nonwords in left operculum, the right superior parietal lobe and right superior temporal gyrus indicating higher current density for nonwords than for words in these areas. ERPs of mirror masked stimuli can indicate unconscious discrimination even in cases where behavioural priming is unreliable. This approach might be useful for investigating differences in early, nonconscious stages of word perception.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The vestibular system contributes to the control of posture and eye movements and is also involved in various cognitive functions including spatial navigation and memory. These functions are subtended by projections to a vestibular cortex, whose exact location in the human brain is still a matter of debate (Lopez and Blanke, 2011). The vestibular cortex can be defined as the network of all cortical areas receiving inputs from the vestibular system, including areas where vestibular signals influence the processing of other sensory (e.g. somatosensory and visual) and motor signals. Previous neuroimaging studies used caloric vestibular stimulation (CVS), galvanic vestibular stimulation (GVS), and auditory stimulation (clicks and short-tone bursts) to activate the vestibular receptors and localize the vestibular cortex. However, these three methods differ regarding the receptors stimulated (otoliths, semicircular canals) and the concurrent activation of the tactile, thermal, nociceptive and auditory systems. To evaluate the convergence between these methods and provide a statistical analysis of the localization of the human vestibular cortex, we performed an activation likelihood estimation (ALE) meta-analysis of neuroimaging studies using CVS, GVS, and auditory stimuli. We analyzed a total of 352 activation foci reported in 16 studies carried out in a total of 192 healthy participants. The results reveal that the main regions activated by CVS, GVS, or auditory stimuli were located in the Sylvian fissure, insula, retroinsular cortex, fronto-parietal operculum, superior temporal gyrus, and cingulate cortex. Conjunction analysis indicated that regions showing convergence between two stimulation methods were located in the median (short gyrus III) and posterior (long gyrus IV) insula, parietal operculum and retroinsular cortex (Ri). The only area of convergence between all three methods of stimulation was located in Ri. The data indicate that Ri, parietal operculum and posterior insula are vestibular regions where afferents converge from otoliths and semicircular canals, and may thus be involved in the processing of signals informing about body rotations, translations and tilts. Results from the meta-analysis are in agreement with electrophysiological recordings in monkeys showing main vestibular projections in the transitional zone between Ri, the insular granular field (Ig), and SII.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE To assess the association of lesion location and risk of aspiration and to establish predictors of transient versus extended risk of aspiration after supratentorial ischemic stroke. METHODS Atlas-based localization analysis was performed in consecutive patients with MRI-proven first-time acute supratentorial ischemic stroke. Standardized swallowing assessment was carried out within 8±18 hours and 7.8±1.2 days after admission. RESULTS In a prospective, longitudinal analysis, 34 of 94 patients (36%) were classified as having acute risk of aspiration, which was extended (≥7 days) or transient (<7 days) in 17 cases. There were no between-group differences in age, sex, cause of stroke, risk factors, prestroke disability, lesion side, or the degree of age-related white-matter changes. Correcting for stroke volume and National Institutes of Health Stroke Scale with a multiple logistic regression model, significant adjusted odds ratios in favor of acute risk of aspiration were demonstrated for the internal capsule (adjusted odds ratio, 6.2; P<0.002) and the insular cortex (adjusted odds ratio, 4.8; P<0.003). In a multivariate model of extended versus transient risk of aspiration, combined lesions of the frontal operculum and insular cortex was the only significant independent predictor of poor recovery (adjusted odds ratio, 33.8; P<0.008). CONCLUSIONS Lesions of the insular cortex and the internal capsule are significantly associated with acute risk of aspiration after stroke. Combined ischemic infarctions of the frontal operculum and the insular cortex are likely to cause extended risk of aspiration in stroke patients, whereas risk of aspiration tends to be transient in subcortical stroke.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives Pharyngeal arches develop in the head and neck regions, and give rise to teeth, oral jaws, the hyoid bone, operculum, gills, and pharyngeal jaws in teleosts. In this study, the expression patterns of genes in the sonic hedgehog (shh), wnt, ectodysplasin A (eda), and bone morphogenetic protein (bmp) pathways were investigated in the pharyngeal arches of Haplochromis piceatus, one of the Lake Victoria cichlids. Furthermore, the role of the shh pathway in pharyngeal arch development in H. piceatus larvae was investigated. Methods The expression patterns of lymphocyte enhancer binding factor 1 (lef1), ectodysplasin A receptor (edar), shh, patched 1 (ptch1), bmp4, sp5 transcription factor (sp5), sclerostin domain containing 1a (sostdc1a), and dickkopf 1 (dkk1) were investigated in H. piceatus larvae by in situ hybridization. The role of the shh pathway was investigated through morphological phenotypic characterization after its inhibition. Results We found that lef1, edar, shh, ptch1, bmp4, dkk1, sostdc1a, and sp5 were expressed not only in the teeth, but also in the operculum and gill filaments of H piceatus larvae. After blocking the shh pathway using cyclopamine, we observed ectopic shh expression and the disappearance of ptch1 expression. After six weeks of cyclopamine treatment, an absence of teeth in the oral upper jaws and a poor outgrowth of premaxilla, operculum, and gill filaments in juvenile H. piceatus were observed. Conclusions These results suggest that the shh pathway is important for the development of pharyngeal arch derivatives such as teeth, premaxilla, operculum, and gill filaments in H. piceatus.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND AND PURPOSE Acute stroke patients with severely impaired oral intake are at risk of malnutrition and dehydration. Rapid identification of these patients is necessary to establish early enteral tube feeding. Whether specific lesion location predicts early tube dependency was analysed, and the neural correlates of impaired oral intake after hemispheric ischaemic stroke were assessed. METHODS Tube dependency and functional oral intake were evaluated with a standardized comprehensive swallowing assessment within the first 48 h after magnetic resonance imaging proven first-time acute supratentorial ischaemic stroke. Voxel-based lesion symptom mapping (VLSM) was performed to compare lesion location between tube-dependent patients versus patients without tube feeding and impaired versus unimpaired oral intake. RESULTS Out of 119 included patients 43 (36%) had impaired oral intake and 12 (10%) were tube dependent. Both tube dependency and impaired oral intake were significantly associated with a higher National Institutes of Health Stroke Scale score and larger infarct volume and these patients had worse clinical outcome at discharge. Clinical characteristics did not differ between left and right hemispheric strokes. In the VLSM analysis, mildly impaired oral intake correlated with lesions of the Rolandic operculum, the insular cortex, the superior corona radiata and to a lesser extent of the putamen, the external capsule and the superior longitudinal fascicle. Tube dependency was significantly associated with affection of the anterior insular cortex. CONCLUSIONS Mild impairment of oral intake correlates with damage to a widespread operculo-insular swallowing network. However, specific lesions of the anterior insula lead to severe impairment and tube dependency and clinicians might consider early enteral tube feeding in these patients.