7 resultados para microbial biomass C

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil microbial biomass is a key determinant of carbon dynamics in the soil. Several studies have shown that soil microbial biomass significantly increases with plant species diversity, but it remains unclear whether plant species diversity can also stabilize soil microbial biomass in a changing environment. This question is particularly relevant as many global environmental change (GEC) factors, such as drought and nutrient enrichment, have been shown to reduce soil microbial biomass. Experiments with orthogonal manipulations of plant diversity and GEC factors can provide insights whether plant diversity can attenuate such detrimental effects on soil microbial biomass. Here, we present the analysis of 12 different studies with 14 unique orthogonal plant diversity × GEC manipulations in grasslands, where plant diversity and at least one GEC factor (elevated CO2, nutrient enrichment, drought, earthworm presence, or warming) were manipulated. Our results show that higher plant diversity significantly enhances soil microbial biomass with the strongest effects in long-term field experiments. In contrast, GEC factors had inconsistent effects with only drought having a significant negative effect. Importantly, we report consistent non-significant effects for all 14 interactions between plant diversity and GEC factors, which indicates a limited potential of plant diversity to attenuate the effects of GEC factors on soil microbial biomass. We highlight that plant diversity is a major determinant of soil microbial biomass in experimental grasslands that can influence soil carbon dynamics irrespective of GEC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is much interest in the identification of the main drivers controlling changes in the microbial community that may be related to sustainable land use. We examined the influence of soil properties and land-use intensity (N fertilization, mowing, grazing) on total phospholipid fatty acid (PLFA) biomass, microbial community composition (PLFA profiles) and activities of enzymes involved in the C, N, and P cycle. These relationships were examined in the topsoil of grasslands from three German regions (Schorfheide-Chorin (SCH), Hainich-Dun (HAI), Schwabische Alb (ALB)) with different parent material. Differences in soil properties explained 60% of variation in PLFA data and 81% of variation in enzyme activities across regions and land-use intensities. Degraded peat soils in the lowland areas of the SCH with high organic carbon (OC) concentrations and sand content contained lower PLFA biomass, lower concentrations of bacterial, fungal, and arbuscular mycorrhizal PLFAs, but greater enzyme activities, and specific enzyme activities (per unit microbial biomass) than mineral soils in the upland areas of the HAI and ALB, which are finer textured, drier, and have smaller OC concentrations. After extraction of variation that originated from large-scale differences among regions and differences in land-use intensities between plots, soil properties still explained a significant amount of variation in PLFA data (34%) and enzyme activities (60%). Total PLFA biomass and all enzyme activities were mainly related to OC concentration, while relative abundance of fungi and fungal to bacterial ratio were mainly related to soil moisture. Land-use intensity (LUI) significantly decreased the soil C:N ratio. There was no direct effect of LUI on total PLFA biomass, microbial community composition, N and P cycling enzyme activities independent of study region and soil properties. In contrast, the activities and specific activities of enzymes involved in the C cycle increased significantly with LUI independent of study region and soil properties, which can have impact on soil organic matter decomposition and nutrient cycling. Our findings demonstrate that microbial biomass and community composition as well as enzyme activities are more controlled by soil properties than by grassland management at the regional scale. (C) 2013 Elsevier B.V: All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Subalpine grasslands are highly seasonal environments and likely subject to strong variability in nitrogen (N) dynamics. Plants and microbes typically compete for N acquisition during the growing season and particularly at plant peak biomass. During snowmelt, plants could potentially benefit from a decrease in competition by microbes, leading to greater plant N uptake associated with active growth and freeze-thaw cycles restricting microbial growth. In managed subalpine grasslands, we expect these interactions to be influenced by recent changes in agricultural land use, and associated modifications in plant and microbial communities. At several subalpine grasslands in the French Alps, we added pulses of 15N to the soil at the end of snowmelt, allowing us to compare the dynamics of inorganic N uptake in plants and microbes during this period with that previously reported at the peak biomass in July. In all grasslands, while specific shoot N translocation (per g of biomass) of dissolved inorganic nitrogen (DIN) was two to five times greater at snowmelt than at peak biomass, specific microbial DIN uptakes were similar between the two sampling dates. On an area basis, plant communities took more DIN than microbial communities at the end of snowmelt when aboveground plant biomasses were at least two times lower than at peak biomass. Consequently, inorganic N partitioning after snowmelt switches in favor of plant communities, allowing them to support their growing capacities at this period of the year. Seasonal differences in microbial and plant inorganic N-related dynamics were also affected by past (terraced vs. unterraced) rather than current (mown vs. unmown) land use. In terraced grasslands, microbial biomass N remained similar across seasons, whereas in unterraced grasslands, microbial biomass N was higher and microbial C : N lower at the end of snowmelt as compared to peak biomass. Further investigations on microbial community composition and their organic N uptake dynamics are required to better understand the decrease in microbial DIN uptake.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nutrient inputs into ecosystems of the tropical mountain rainforest region are projected to further increase in the next decades. To investigate whether important ecosystem services such as nutrient cycling and matter turnover in native forests and pasture ecosystems show different patterns of response, two nutrient addition experiments have been established: NUMEX in the forest and FERPAST at the pasture. Both ecosystems already responded 1.5 years after the start of nutrient application (N, P, NP, Ca). Interestingly, most nutrients remained in the respective systems. While the pasture grass was co-limited by N and P, most tree species responded to P addition. Soil microbial biomass in the forest litter layer increased after NP fertilization pointing to nutrient co-limitation. In pasture soils, microorganisms were neither limited by N nor P. The results support the hypothesis that multiple and temporally variable nutrient limitations can coexist in tropical ecosystems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background and Aims: The response of forest ecosystems to continuous nitrogen (N) deposition is still uncertain. We investigated imports and exports of dissolved N from mull-type organic layers to identify the controls of N leaching in Central European beech forests under continuous N deposition. Methods: Dissolved N fluxes with throughfall and through mull-type organic layers (litter leachate) were measured continuously in 12 beech forests on calcareous soil in two regions in Germany over three consecutive growing seasons. Results Mean growing season net (i.e. litter leachate – throughfall flux) fluxes of total dissolved N (TDN) from the organic layer were low (2.3 ± 5.6 kg ha −1 ) but varied widely from 12.9 kg ha −1 to –8.3 kg ha −1 . The small increase of dissolved N fluxes during the water passage through mull-type organic layers suggested that high turnover rates coincided with high microbial N assimilation and plant N uptake. Stand basal area had a positive feedback on N fluxes by providing litter for soil organic matter forma- tion. Plant diversity, especially herb diversity, reduced dissolved N fluxes. Soil fauna biomass increased NO3−-N fluxes with litter leachate by stimulating mineralization. Microbial biomass measures were not related to dissolved N fluxes. Conclusions Our results show that dissolved N exports from organic layers contain significant amounts of throughfall-derived N (mainly NO3−-N) that flushes through the organic layer but also highlight that N leaching from organic layers is driven by the complex interplay of plants, animals and microbes. Furthermore, diverse understories reduce N leaching from Central European beech forests.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Temporal dynamics create unique and often ephemeral conditions that can influence soil microbial biogeography at different spatial scales. This study investigated the relation between decimeter to meter spatial variability of soil microbial community structure, plant diversity, and soil properties at six dates from April through November. We also explored the robustness of these interactions over time. An historically unfertilized, unplowed grassland in southwest Germany was selected to characterize how seasonal variability in the composition of plant communities and substrate quality changed the biogeography of soil microorganisms at the plot scale (10 m x 10 m). Microbial community spatial structure was positively correlated with the local environment, i.e. physical and chemical soil properties, in spring and autumn, while the density and diversity of plants had an additional effect in the summer period. Spatial relationships among plant and microbial communities were detected only in the early summer and autumn periods when aboveground biomass increase was most rapid and its influence on soil microbial communities was greatest due to increased demand by plants for nutrients. Individual properties exhibited varying degrees of spatial structure over the season. Differential responses of Gram positive and Gram negative bacterial communities to seasonal shifts in soil nutrients were detected. We concluded that spatial distribution patterns of soil microorganisms change over a season and that chemical soil properties are more important controlling factors than plant density and diversity. Finer spatial resolution, such as the mm to cm scale, as well as taxonomic resolution of microbial groups, could help determine the importance of plant species density, composition, and growth stage in shaping microbial community composition and spatial patterns. (C) 2014 The Authors. Published by Elsevier Ltd. All rights reserved.