9 resultados para metals flammability
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
With increasing life expectancy and active lifestyles, the longevity of arthroplasties has become an important problem in orthopaedic surgery and will remain so until novel approaches to joint preservation have been developed. The sensitivity of the recipient to the metal alloys may be one of the factors limiting the lifespan of implants. In the present study, the response of human monocytes from peripheral blood to an exposure to metal ions was investigated, using the method of real-time polymerase chain reaction (PCR)-based low-density arrays. Upon stimulation with bivalent (Co2+ and Ni2+) and trivalent (Ti3+) cations and with the calcium antagonist LaCl3, the strength of the elicited monocytic response was in the order of Co2+ > or = Ni2+ > Ti3+ > or = LaCl3. The transcriptional regulation of the majority of genes affected by the exposure of monocytes to Co2+ and Ni2+ was similar. Some genes critically involved in the processes of inflammation and bone resorption, however, were found to be differentially regulated by these bivalent cations. The data demonstrate that monocytic gene expression is adapted in response to metal ions and that this response is, in part, specific for the individual metals. It is suggested that metal alloys used in arthroplasties may affect the extent of inflammation and bone resorption in the peri-implant tissues in dependence of their chemical composition.
Resumo:
Metallic catcher foils have been investigated on their thermal release capabilities for future superheavy element studies. These catcher materials shall serve as connection between production and chemical investigation of superheavy elements (SHE) at vacuum conditions. The diffusion constants and activation energies of diffusion have been extrapolated for various catcher materials using an atomic volume based model. Release rates can now be estimated for predefined experimental conditions using the determined diffusion values. The potential release behavior of the volatile SHE Cn (E112), E113, Fl (E114), E115, and Lv (E116) from polycrystalline, metallic foils of Ni, Y, Zr, Nb, Mo, Hf, Ta, and W is predicted. Example calculations showed that Zr is the best suited material in terms of on-line release efficiency and long-term operation stability. If higher temperatures up to 2773 K are applicable, tungsten is suggested to be the material of choice for such experiments.
Resumo:
We report the concentrations of 28 PAHs, 15 oxygenated PAHs (OPAHs) and 11 trace metals/metalloids (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Se, and Zn) in muscle and gut + gill tissues of demersal fishes (Drapane africana, Cynoglossus senegalensis and Pomadasys peroteti) from three locations along the coast of the Gulf of Guinea (Ghana). The concentrations of ∑ 28PAHs in muscle tissues averaged 192 ng g− 1 dw (range: 71–481 ng g− 1 dw) and were not statistically different between locations. The concentrations of ∑ 28 PAHs were higher in guts + gills than in muscles. The PAH composition pattern was dominated by low molecular weight compounds (naphthalene, alkyl-naphthalenes and phenanthrene). All fish tissues had benzo[a]pyrene concentrations lower than the EU limit for food safety. Excess cancer risk from consumption of some fish was higher than the guideline value of 1 × 10− 6. The concentrations of ∑ 15 OPAHs in fish muscles averaged 422 ng g− 1 dw (range: 28–1715 ng g− 1dw). The ∑ 15 OPAHs/∑ 16 US-EPA PAHs concentration ratio was > 1 in 68% of the fish muscles and 100% of guts + gills. The log-transformed concentrations of PAHs and OPAHs in muscles, guts + gills were significantly (p < 0.05) correlated with their octanol–water partitioning coefficients, strongly suggesting that equilibrium partitioning from water/sediment into fish tissue was the main mechanism of bioaccumulation. The trace metal concentrations in the fish tissues were in the medium range when compared to fish from other parts of the world. The concentrations of some trace metals (Cd, Cu, Fe, Mn, Zn) were higher in guts + gills than in muscle tissues. The target hazard quotients for metals were < 1 and did not indicate a danger to the local population. We conclude that the health risk arising from the consumption of the studied fish (due to their PAHs and trace metals content) is minimal.
Resumo:
We present a derivation and, based on it, an extension of a model originally proposed by V.G. Niziev to describe continuous wave laser cutting of metals. Starting from a local energy balance and by incorporating heat removal through heat conduction to the bulk material, we find a differential equation for the cutting profile. This equation is solved numerically and yields, besides the cutting profiles, the maximum cutting speed, the absorptivity profiles, and other relevant quantities. Our main goal is to demonstrate the model’s capability to explain some of the experimentally observed differences between laser cutting at around 1 and 10 μm wavelengths. To compare our numerical results to experimental observations, we perform simulations for exactly the same material and laser beam parameters as those used in a recent comparative experimental study. Generally, we find good agreement between theoretical and experimental results and show that the main differences between laser cutting with 1- and 10-μm beams arise from the different absorptivity profiles and absorbed intensities. Especially the latter suggests that the energy transfer, and thus the laser cutting process, is more efficient in the case of laser cutting with 1-μm beams.
Resumo:
Copper, zinc, manganese, iron, nickel and molybdenum are essential micronutrients for plants. However, when present in excess they may damage the plant or decrease the quality of harvested plant products. Some other heavy metals such as cadmium, lead or mercury are not needed by plants and represent pollutants. The uptake into the roots, the loading into the xylem, the acropetal transport to the shoot with the transpiration stream and the further redistribution in the phloem are crucial for the distribution in aerial plant parts. This review is focused on long-distance transport of heavy metals via xylem and phloem and on interactions between the two transport systems. Phloem transport is the basis for the redistribution within the shoot and for the accumulation in fruits and seeds. Solutes may be transferred from the xylem to the phloem (e.g., in the small bundles in stems of cereals, in minor leaf veins). Nickel is highly phloem-mobile and directed to expanding plant parts. Zinc and to a lesser degree also cadmium are also mobile in the phloem and accumulate in meristems (root tips, shoot apex, axillary buds). Iron and manganese are characterized by poor phloem mobility and are retained in older leaves.
Resumo:
The alkali metals cesium, rubidium, lithium and sodium were introduced together with strontium via flaps into leaf laminas or into the stem of maturing, intact winter wheat (Triticum aestivum L. cv. Arina) grown in a field. Long-distance transport of these elements and the influence of the application date and of different application positions were investigated. The phloem-immobile Sr served as a marker for the distribution of the xylem sap in the plants. Dry matter accumulation in the grains and the transpiration per shoot were not markedly affected by the treatments as compared to control plants. The phloem mobility was rather high for Cs and Rb. Li was almost immobile in the phloem (similarly to Sr). An application into the cut stem xylem below the second leaf node contributed more to the contents in the grains than an application into the flag leaf. An earlier feeding date led to a higher accumulation in the grains. The marked losses of the elements applied during maturation (most pronounced for Li) can be explained by leakage in the rain.
Resumo:
Conventional wisdom on the insufficiency of existing WTO disciplines on export restrictions has triggered momentum on the issue. In this book, Ilaria Espa offers a comprehensive analysis of the scope and coverage of WTO disciplines on export restrictions in light of emerging case law. She investigates whether such rules still provide a credible and effective framework capable of preventing abuses in the use of export restrictive measures on critical minerals and metals during a period of economic crisis and change in international trade patterns. Giving a broad overview of the export restrictions applied to these materials, Espa identifies distinctive features in the proliferation of export barriers and analyses the existing WTO rules to reveal their gaps and inconsistencies. She goes on to present solutions based upon her findings with the aim of bringing more coherence and equity to WTO rules on the export side.