73 resultados para metallic elements

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mass spectrometric analysis of elemental and isotopic compositions of several NIST standards is performed by a miniature laser ablation/ionisation reflectron-type time-of-flight mass spectrometer (LMS) using a fs-laser ablation ion source (775 nm, 190 fs, 1 kHz). The results of the mass spectrometric studies indicate that in a defined range of laser irradiance (fluence) and for a certain number of accumulations of single laser shot spectra, the measurements of isotope abundances can be conducted with a measurement accuracy at the per mill level and at the per cent level for isotope concentrations higher and lower than 100 ppm, respectively. Also the elemental analysis can be performed with a good accuracy. The LMS instrument combined with a fs-laser ablation ion source exhibits similar detection efficiency for both metallic and non-metallic elements. Relative sensitivity coefficients were determined and found to be close to one, which is of considerable importance for the development of standard-less instruments. Negligible thermal effects, sample damage and excellent characteristics of the fs-laser beam are thought to be the main reason for substantial improvement of the instrumental performance compared to other laser ablation mass spectrometers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Key performance features of a miniature laser ablation time-of-flight mass spectrometer designed for in situ investigations of the chemical composition of planetary surfaces are presented. This mass spectrometer is well suited for elemental and isotopic analysis of raw solid materials with high sensitivity and high spatial resolution. In this study, ultraviolet laser radiation with irradiances suitable for ablation (< 1 GW/cm2) is used to achieve stable ion formation and low sample consumption. In comparison to our previous laser ablation studies at infrared wavelengths, several improvements to the experimental setup have been made, which allow accurate control over the experimental conditions and good reproducibility of measurements. Current performance evaluations indicate significant improvements to several instrumental figures of merit. Calibration of the mass scale is performed within a mass accuracy (Δm/m) in the range of 100 ppm, and a typical mass resolution (m/Δm) ~600 is achieved at the lead mass peaks. At lower laser irradiances, the mass resolution is better, about (m/Δm) ~900 for lead, and limited by the laser pulse duration of 3 ns. The effective dynamic range of the instrument was enhanced from about 6 decades determined in previous study up to more than 8 decades at present. Current studies show high sensitivity in detection of both metallic and non-metallic elements. Their abundance down to tens of ppb can be measured together with their isotopic patterns. Due to strict control of the experimental parameters, e.g. laser characteristics, ion-optical parameters and sample position, by computer control, measurements can be performed with high reproducibility. Copyright © 2012 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metallic catcher foils have been investigated on their thermal release capabilities for future superheavy element studies. These catcher materials shall serve as connection between production and chemical investigation of superheavy elements (SHE) at vacuum conditions. The diffusion constants and activation energies of diffusion have been extrapolated for various catcher materials using an atomic volume based model. Release rates can now be estimated for predefined experimental conditions using the determined diffusion values. The potential release behavior of the volatile SHE Cn (E112), E113, Fl (E114), E115, and Lv (E116) from polycrystalline, metallic foils of Ni, Y, Zr, Nb, Mo, Hf, Ta, and W is predicted. Example calculations showed that Zr is the best suited material in terms of on-line release efficiency and long-term operation stability. If higher temperatures up to 2773 K are applicable, tungsten is suggested to be the material of choice for such experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bacteria, yeasts, and viruses are rapidly killed on metallic copper surfaces, and the term "contact killing" has been coined for this process. While the phenomenon was already known in ancient times, it is currently receiving renewed attention. This is due to the potential use of copper as an antibacterial material in health care settings. Contact killing was observed to take place at a rate of at least 7 to 8 logs per hour, and no live microorganisms were generally recovered from copper surfaces after prolonged incubation. The antimicrobial activity of copper and copper alloys is now well established, and copper has recently been registered at the U.S. Environmental Protection Agency as the first solid antimicrobial material. In several clinical studies, copper has been evaluated for use on touch surfaces, such as door handles, bathroom fixtures, or bed rails, in attempts to curb nosocomial infections. In connection to these new applications of copper, it is important to understand the mechanism of contact killing since it may bear on central issues, such as the possibility of the emergence and spread of resistant organisms, cleaning procedures, and questions of material and object engineering. Recent work has shed light on mechanistic aspects of contact killing. These findings will be reviewed here and juxtaposed with the toxicity mechanisms of ionic copper. The merit of copper as a hygienic material in hospitals and related settings will also be discussed.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study sought to compare the neointimal response of metallic everolimus drug-eluting stents (DES) and polymeric everolimus bioresorbable vascular scaffolds (BVS) by optical coherence tomography at 1 year.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to compare the angiographic changes in coronary geometry of the bioresorbable vascular scaffolds (BVS) and metallic platform stent (MPS) between baseline and follow-up.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ABSORB cohort A trial using the bioresorbable everolimus-eluting scaffold (BVS revision 1.0, Abbott Vascular) demonstrated a slightly higher acute recoil with BVS than with metallic stents. To reinforce the mechanical strength of the scaffold, the new BVS scaffold (revision 1.1) with modified strut design was developed and tested in the ABSORB cohort B trial. This study sought to evaluate and compare the in vivo acute scaffold recoil of the BVS revision 1.0 in ABSORB cohort A and the BVS revision 1.1 in ABSORB cohort B with the historical recoil of the XIENCE V® everolimus-eluting metal stent (EES, SPIRIT I and II).

Relevância:

20.00% 20.00%

Publicador: