107 resultados para meridional overturning circulation
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The variability of the Atlantic meridional overturing circulation (AMOC) strength is investigated in control experiments and in transient simulations of up to the last millennium using the low-resolution Community Climate System Model version 3. In the transient simulations the AMOC exhibits enhanced low-frequency variability that is mainly caused by infrequent transitions between two semi-stable circulation states which amount to a 10 percent change of the maximum overturning. One transition is also found in a control experiment, but the time-varying external forcing significantly increases the probability of the occurrence of such events though not having a direct, linear impact on the AMOC. The transition from a high to a low AMOC state starts with a reduction of the convection in the Labrador and Irminger Seas and goes along with a changed barotropic circulation of both gyres in the North Atlantic and a gradual strengthening of the convection in the Greenland-Iceland-Norwegian (GIN) Seas. In contrast, the transition from a weak to a strong overturning is induced by decreased mixing in the GIN Seas. As a consequence of the transition, regional sea surface temperature (SST) anomalies are found in the midlatitude North Atlantic and in the convection regions with an amplitude of up to 3 K. The atmospheric response to the SST forcing associated with the transition indicates a significant impact on the Scandinavian surface air temperature (SAT) in the order of 1 K. Thus, the changes of the ocean circulation make a major contribution to the Scandinavian SAT variability in the last millennium.
Resumo:
We investigate the respective role of variations in subpolar deep water formation and Nordic Seas overflows for the decadal to multidecadal variability of the Atlantic meridional overturning circulation (AMOC). This is partly done by analysing long (order of 1000 years) control simulations with five coupled climate models. For all models, the maximum influence of variations in subpolar deep water formation is found at about 45° N, while the maximum influence of variations in Nordic Seas overflows is rather found at 55 to 60° N. Regarding the two overflow branches, the influence of variations in the Denmark Strait overflow is, for all models, substantially larger than that of variations in the overflow across the Iceland–Scotland Ridge. The latter might, however, be underestimated, as the models in general do not realistically simulate the flow path of the Iceland–Scotland overflow water south of the Iceland–Scotland Ridge. The influence of variations in subpolar deep water formation is, on multimodel average, larger than that of variations in the Denmark Strait overflow. This is true both at 45° N, where the maximum standard deviation of decadal to multidecadal AMOC variability is located for all but one model, and at the more classical latitude of 30° N. At 30° N, variations in subpolar deep water formation and Denmark Strait overflow explain, on multimodel average, about half and one-third respectively of the decadal to multidecadal AMOC variance. Apart from analysing multimodel control simulations, we have performed sensitivity experiments with one of the models, in which we suppress the variability of either subpolar deep water formation or Nordic Seas overflows. The sensitivity experiments indicate that variations in subpolar deep water formation and Nordic Seas overflows are not completely independent. We further conclude from these experiments that the decadal to multidecadal AMOC variability north of about 50° N is mainly related to variations in Nordic Seas overflows. At 45° N and south of this latitude, variations in both subpolar deep water formation and Nordic Seas overflows contribute to the AMOC variability, with neither of the processes being very dominant compared to the other.
Resumo:
The evolution of the Atlantic Meridional Overturning Circulation (MOC) in 30 models of varying complexity is examined under four distinct Representative Concentration Pathways. The models include 25 Atmosphere-Ocean General Circulation Models (AOGCMs) or Earth System Models (ESMs) that submitted simulations in support of the 5th phase of the Coupled Model Intercomparison Project (CMIP5) and 5 Earth System Models of Intermediate Complexity (EMICs). While none of the models incorporated the additional effects of ice sheet melting, they all projected very similar behaviour during the 21st century. Over this period the strength of MOC reduced by a best estimate of 22% (18%–25%; 5%–95% confidence limits) for RCP2.6, 26% (23%–30%) for RCP4.5, 29% (23%–35%) for RCP6.0 and 40% (36%–44%) for RCP8.5. Two of the models eventually realized a slow shutdown of the MOC under RCP8.5, although no model exhibited an abrupt change of the MOC. Through analysis of the freshwater flux across 30°–32°S into the Atlantic, it was found that 40% of the CMIP5 models were in a bistable regime of the MOC for the duration of their RCP integrations. The results support previous assessments that it is very unlikely that the MOC will undergo an abrupt change to an off state as a consequence of global warming.
Resumo:
Reconstructing past modes of ocean circulation is an essential task in paleoclimatology and paleoceanography. To this end, we combine two sedimentary proxies, Nd isotopes (εNd) and the 231Pa/230Th ratio, both of which are not directly involved in the global carbon cycle, but allow the reconstruction of water mass provenance and provide information about the past strength of overturning circulation, respectively. In this study, combined 231Pa/230Th and εNd down-core profiles from six Atlantic Ocean sediment cores are presented. The data set is complemented by the two available combined data sets from the literature. From this we derive a comprehensive picture of spatial and temporal patterns and the dynamic changes of the Atlantic Meridional Overturning Circulation over the past ∼25 ka. Our results provide evidence for a consistent pattern of glacial/stadial advances of Southern Sourced Water along with a northward circulation mode for all cores in the deeper (>3000 m) Atlantic. Results from shallower core sites support an active overturning cell of shoaled Northern Sourced Water during the LGM and the subsequent deglaciation. Furthermore, we report evidence for a short-lived period of intensified AMOC in the early Holocene.
Resumo:
The Atlantic meridional overturning circulation affects the latitudinal distribution of heat, and is a key component of the climate system. Proxy reconstructions, based on sedimentary Pa-231/Th-230 ratios and the difference between surface-and deep-water radiocarbon ages, indicate that during the last glacial period, the overturning circulation was reduced during millennial-scale periods of cooling(1-5). However, much debate exists over the robustness of these proxies(6-8). Here e combine proxy reconstructions of sea surface and air temperatures and a global climate model to quantitatively estimate changes in the strength of the Atlantic meridional overturning circulation during the last glacial period. We find that, relative to the Last Glacial Maximum, the overturning circulation was reduced by approximately 14 Sv during the cold Heinrich event 1. During the Younger Dryas cold event, the overturning circulation was reduced by approximately 12 Sv, relative to the preceding warm interval. These changes are consistent with qualitative estimates of the overturning circulation from sedimentary Pa-231/Th-230 ratios. In addition, we find that the strength of the overturning circulation during the Last Glacial Maximum and the Holocene epoch are indistinguishable within the uncertainty of the reconstruction.
Resumo:
Using a cost-efficient climate model, the effect of changes in overturning circulation on neodymium isotopic composition,ϵNd, is systematically examined for the first time. Idealized sequences of abrupt climate changes are induced by the application of periodic freshwater fluxes to the North Atlantic (NA) and the Southern Ocean (SO), thus mainly affecting either the formation of North Atlantic Deep Water (NADW) or Antarctic Bottom Water (AABW). Variations in ϵNd reflect weakening and strengthening of the formation of NADW and AABW, changes in ϵNdof end-members are relatively small. Relationships betweenϵNd and the strength of NADW or AABW are more pronounced for AABW than for NADW. Atlantic patterns of variations in ϵNd systematically differ between NA and SO experiments. Additionally, the signature of changes in ϵNd in the Atlantic and the Pacific is alike in NA but opposite in SO experiments. Discrimination between NA and SO experiments is therefore possible based on the Atlantic pattern of variations in ϵNd and the contrariwise behavior of ϵNd in the Atlantic and the Pacific. In further experiments we examined the effect of variations in magnitudes of particle export fluxes. Within the examined range, and although settling particles represent the only sink of Nd, their effects on ϵNd are relatively small. Our results confirm the large potential of ϵNd as a paleocirculation tracer but also indicate its limitations of quantitative reconstructions of changes in the Atlantic Meridional Ocean Circulation.