9 resultados para membrane lipids

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cardiac myocytes are characterized by distinct structural and functional entities involved in the generation and transmission of the action potential and the excitation-contraction coupling process. Key to their function is the specific organization of ion channels and transporters to and within distinct membrane domains, which supports the anisotropic propagation of the depolarization wave. This review addresses the current knowledge on the molecular actors regulating the distinct trafficking and targeting mechanisms of ion channels in the highly polarized cardiac myocyte. In addition to ubiquitous mechanisms shared by other excitable cells, cardiac myocytes show unique specialization, illustrated by the molecular organization of myocyte-myocyte contacts, e.g., the intercalated disc and the gap junction. Many factors contribute to the specialization of the cardiac sarcolemma and the functional expression of cardiac ion channels, including various anchoring proteins, motors, small GTPases, membrane lipids, and cholesterol. The discovery of genetic defects in some of these actors, leading to complex cardiac disorders, emphasizes the importance of trafficking and targeting of ion channels to cardiac function. A major challenge in the field is to understand how these and other actors work together in intact myocytes to fine-tune ion channel expression and control cardiac excitability.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Lipids serve important functions as membrane constituents and also as energy storing molecules. Besides these functions certain lipid species have now been recognized as signalling molecules that regulate a multitude of cellular responses including cell growth and death, and also inflammatory reactions. Bioactive lipids are generated by hydrolysis from membrane lipids mainly by phospholipases giving rise to fatty acids and lysophospholipids that either directly exert their function or are further converted to active mediators. This review will summarize the present knowledge about bioactive lipids that either promote or attenuate inflammatory reactions. These lipids include polyunsaturated fatty acids (PUFA), eicosanoids including the epoxyeicosatrienoic acids (EET), peroxisome proliferation activating receptor (PPAR) activators, cannabinoids and the sphingolipids ceramide, sphingosine 1-phosphate and sphingosylphosphorylcholine.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper we report on our study of the changes in biomass, lipid composition, and fermentation end products, as well as in the ATP level and synthesis rate in cultivated potato (Solanum tuberosum) cells submitted to anoxia stress. During the first phase of about 12 h, cells coped with the reduced energy supply brought about by fermentation and their membrane lipids remained intact. The second phase (12–24 h), during which the energy supply dropped down to 1% to 2% of its maximal theoretical normoxic value, was characterized by an extensive hydrolysis of membrane lipids to free fatty acids. This autolytic process was ascribed to the activation of a lipolytic acyl hydrolase. Cells were also treated under normoxia with inhibitors known to interfere with energy metabolism. Carbonyl-cyanide-4-trifluoromethoxyphenylhydrazone did not induce lipid hydrolysis, which was also the case when sodium azide or salicylhydroxamic acid were fed separately. However, the simultaneous use of sodium azide plus salicylhydroxamic acid or 2-deoxy-D-glucose plus iodoacetate with normoxic cells promoted a lipid hydrolysis pattern similar to that seen in anoxic cells. Therefore, a threshold exists in the rate of ATP synthesis (approximately 10 μmol g−1 fresh weight h−1), below which the integrity of the membranes in anoxic potato cells cannot be preserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel proxy for continental mean annual air temperature (MAAT) and soil pH, the MBT/CBT-paleothermometer, is based on the temperature (T) and pH-dependent distribution of specific bacterial membrane lipids (branched glycerol dialkyl glycerol tetraethers – GDGTs) in soil organic matter. Here, we tested the applicability of the MBT/CBT-paleothermometer to sediments from Lake Cadagno, a high Alpine lake in southern Switzerland with a small catchment of 2.4 km2. We analysed the distribution of bacterial GDGTs in catchment soils and in a radiocarbon-dated sediment core from the centre of the lake, covering the past 11 000 yr. The distribution of bacterial GDGTs in the catchment soils is very similar to that in the lake's surface sediments, indicating a common origin of the lipids. Consequently, their transfer from the soils into the sediment record seems undisturbed, probably without any significant alteration of their distribution through in situ production in the lake itself or early diagenesis of branched GDGTs. The MBT/CBT-inferred MAAT estimates from soils and surface sediments are in good agreement with instrumental values for the Lake Cadagno region (~0.5 °C). Moreover, downcore MBT/CBT-derived MAAT estimates match in timing and magnitude other proxy-based T reconstructions from nearby locations for the last two millennia. Major climate anomalies recorded by the MBT/CBT-paleothermometer are, for instance, the Little Ice Age (~14th to 19th century) and the Medieval Warm Period (MWP, ~9th to 14th century). Together, our observations indicate the quantitative applicability of the MBT/CBT-paleothermometer to Lake Cadagno sediments. In addition to the MWP, our lacustrine paleo T record indicates Holocene warm phases at about 3, 5, 7 and 11 kyr before present, which agrees in timing with other records from both the Alps and the sub-polar North-East Atlantic Ocean. The good temporal match of the warm periods determined for the central Alpine region with north-west European winter precipitation strength implies a strong and far-reaching influence of the North Atlantic Oscillation on continental European T variations during the Holocene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sufficient oxygen supply is crucial for the development and physiology of mammalian cells and tissues. When simple diffusion of oxygen becomes inadequate to provide the necessary flow of substrate, evolution has provided cells with tools to detect and respond to hypoxia by upregulating the expression of specific genes, which allows an adaptation to hypoxia-induced stress conditions. The modulation of cell signaling by hypoxia is an emerging area of research that provides insight into the orchestration of cell adaptation to a changing environment. Cell signaling and adaptation processes are often accompanied by rapid and/or chronic remodeling of membrane lipids by activated lipases. This review highlights the bi-directional relation between hypoxia and lipid signaling mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The perforation of the plasmalemma by pore-forming toxins causes an influx of Ca2+ and an efflux of cytoplasmic proteins. In order to ensure cellular survival, lesions have to be identified, plugged and removed from the membrane. The Ca2+-driven fusion of lysosomes with the plasma membrane leads to hydrolysis of sphingomyelin by acid sphingomyelinase and a formation of ceramide platforms in the outer leaflet of the lipid bilayer. We propose that the negative curvature, promoted by tighter packing of lipids in the outer layer, leads to an inward vesiculation of the damaged area for its endocytotic uptake and internal degradation. In contrast, the activation of neutral sphingomyelinase triggers the production of ceramide within the inner leaflet of the lipid bilayer, thereby promoting an outward curvature, which enables the cell to shed the membrane-containing toxin pore into the extracellular space. In this process, ceramide is supported by members of the annexin protein family which act as Ca2+ sensors and as membrane fusion agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Autophagy is a lysosomal bulk degradation pathway for cytoplasmic cargo, such as long-lived proteins, lipids, and organelles. Induced upon nutrient starvation, autophagic degradation is accomplished by the concerted actions of autophagy-related (ATG) proteins. Here we demonstrate that two ATGs, human Atg2A and Atg14L, colocalize at cytoplasmic lipid droplets (LDs) and are functionally involved in controlling the number and size of LDs in human tumor cell lines. We show that Atg2A is targeted to cytoplasmic ADRP-positive LDs that migrate bidirectionally along microtubules. The LD localization of Atg2A was found to be independent of the autophagic status. Further, Atg2A colocalized with Atg14L under nutrient-rich conditions when autophagy was not induced. Upon nutrient starvation and dependent on phosphatidylinositol 3-phosphate [PtdIns(3)P] generation, both Atg2A and Atg14L were also specifically targeted to endoplasmic reticulum-associated early autophagosomal membranes, marked by the PtdIns(3)P effectors double-FYVE containing protein 1 (DFCP1) and WD-repeat protein interacting with phosphoinositides 1 (WIPI-1), both of which function at the onset of autophagy. These data provide evidence for additional roles of Atg2A and Atg14L in the formation of early autophagosomal membranes and also in lipid metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We used multiple sets of simulations both at the atomistic and coarse-grained level of resolution to investigate interaction and binding of α-tochoperol transfer protein (α-TTP) to phosphatidylinositol phosphate lipids (PIPs). Our calculations indicate that enrichment of membranes with such lipids facilitate membrane anchoring. Atomistic models suggest that PIP can be incorporated into the binding cavity of α-TTP and therefore confirm that such protein can work as lipid exchanger between the endosome and the plasma membrane. Comparison of the atomistic models of the α-TTP-PIPs complex with membrane-bound α-TTP revealed different roles for the various basic residues composing the basic patch that is key for the protein/ligand interaction. Such residues are of critical importance as several point mutations at their position lead to severe forms of ataxia with vitamin E deficiency (AVED) phenotypes. Specifically, R221 is main residue responsible for the stabilization of the complex. R68 and R192 exchange strong interactions in the protein or in the membrane complex only, suggesting that the two residues alternate contact formation, thus facilitating lipid flipping from the membrane into the protein cavity during the lipid exchange process. Finally, R59 shows weaker interactions with PIPs anyway with a clear preference for specific phosphorylation positions, hinting a role in early membrane selectivity for the protein. Altogether, our simulations reveal significant aspects at the atomistic scale of interactions of α-TTP with the plasma membrane and with PIP, providing clarifications on the mechanism of intracellular vitamin E trafficking and helping establishing the role of key residue for the functionality of α-TTP.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cell envelope of mycobacteria, which include the causative agents of tuberculosis and leprosy, is crucial for their success as pathogens. Despite a continued strong emphasis on identifying the multiple chemical components of this envelope, it has proven difficult to combine its components into a comprehensive structural model, primarily because the available ultrastructural data rely on conventional electron microscopy embedding and sectioning, which are known to induce artifacts. The existence of an outer membrane bilayer has long been postulated but has never been directly observed by electron microscopy of ultrathin sections. Here we have used cryo-electron microscopy of vitreous sections (CEMOVIS) to perform a detailed ultrastructural analysis of three species belonging to the Corynebacterineae suborder, namely, Mycobacterium bovis BCG, Mycobacterium smegmatis, and Corynebacterium glutamicum, in their native state. We provide new information that accurately describes the different layers of the mycobacterial cell envelope and challenges current models of the organization of its components. We show a direct visualization of an outer membrane, analogous to that found in gram-negative bacteria, in the three bacterial species examined. Furthermore, we demonstrate that mycolic acids, the hallmark of mycobacteria and related genera, are essential for the formation of this outer membrane. In addition, a granular layer and a low-density zone typifying the periplasmic space of gram-positive bacteria are apparent in CEMOVIS images of mycobacteria and corynebacteria. Based on our observations, a model of the organization of the lipids in the outer membrane is proposed. The architecture we describe should serve as a reference for future studies to relate the structure of the mycobacterial cell envelope to its function.