6 resultados para measuring device

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study deals with the determination of the retentive force between primary and secondary telescopic crowns under clinical conditions. Forty-three combined fixed-removable prostheses with a total of 140 double crowns were used for retention force measurement of the telescopic crowns prior to cementation. The crowns had a preparation of 1-2°. A specifically designed measuring device was used. The retentive forces were measured with and without lubrication by a saliva substitute. The measured values were analyzed according to the type of tooth (incisors, canines, premolars, and molars). Additionally, a comparison between lubricated and unlubricated telescopic crowns was done. As maximum retention force value 29.98 N was recorded with a telescopic crown on a molar, while the minimum of 0.08 N was found with a specimen on a canine. The median value of retention force of all telescopic crowns reached 1.93 N with an interquartile distance of 4.35 N. No statistically significant difference between lubricated and unlubricated specimens was found. The results indicate that retention force values of telescopic crowns, measured in clinical practice, are often much lower than those cited in the literature. The measurements also show a wide range. Whether this proves to be a problem for the patient's quality of life or not can however only be established by a comparison of the presented results with a follow-up study involving measurement of intraoral retention and determination by e.g. oral health impact profile.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

STUDY DESIGN.: Cadaver study. OBJECTIVE.: To determine bone strength in vertebrae by measuring peak breakaway torque or indentation force using custom-made pedicle probes. SUMMARY OF BACKGROUND DATA.: Screw performance in dorsal spinal instrumentation is dependent on bone quality of the vertebral body. To date no intraoperative measuring device to validate bone strength is available. Destructive testing may predict bone strength in transpedicular instrumentations in osteoporotic vertebrae. Insertional torque measurements showed varying results. METHODS.: Ten human cadaveric vertebrae were evaluated for bone mineral density (BMD) measurements by quantitative computed tomography. Peak torque and indentation force of custom-made probes as a measure for mechanical bone strength were assessed via a transpedicular approach. The results were correlated to regional BMD and to biomechanical load testing after pedicle screw implementation. RESULTS.: Both methods generated a positive correlation to failure load of the respective vertebrae. The correlation of peak breakaway torque to failure load was r = 0.959 (P = 0.003), therewith distinctly higher than the correlation of indentation force to failure load, which was r = 0.690 (P = 0.040). In predicting regional BMD, measurement of peak torque also performed better than that of indentation force (r = 0.897 [P = 0.002] vs. r = 0.777 [P = 0.017]). CONCLUSION.: Transpedicular measurement of peak breakaway torque is technically feasible and predicts reliable local bone strength and implant failure for dorsal spinal instrumentations in this experimental setting.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study deals with the development of the retentive forces of double crowns intraorally measured. Twenty-five combined fixed-removable prostheses with a total of 84 double crowns were included in the study. The intraoral measurement was performed at 72 defined measuring points directly adjacent to the double crowns of the dentures. The measurement was performed 4-6 weeks (baseline), 6 months (recall 1), and 18 months (recall 2) after the insertion of the restoration. A specifically designed measuring device was used. The median values for the single measuring points reached 4.705 N at the baseline, 5.190 N after 6 months, and 3.740 N after 18 months. The measured values were analyzed according to differences between the median retention forces at the three defined points in time. The statistical analysis of the median values showed no statistical difference for the retention force change after 6 months but for the decrease until the second recall (Mann-Whitney test). The retention force per denture was calculated by a summation of the single measuring points. At the baseline, 12.9 N was reached. The forces did only decrease slightly and were not statistically significant. The results indicate that retention force values of double crowns, measured intraorally at the patient, do not relevantly change clinically within the first 1.5 years. Within the limitations of this study, it can be stated that wear does not influence the retentive forces of double crowns within the first 18 months. After this period the retention force should be still sufficient for denture retention.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this in vitro study was to compare toothbrush abrasion of softened enamel after brushing with two (soft and hard) toothbrushes. One hundred and fifty-six human enamel specimens were indented with a Knoop diamond. Salivary pellicle was formed in vitro over a period of 3 h. Erosive lesions were produced by means of 1% citric acid. A force-measuring device allowed a controlled toothbrushing force of 1.5 N. The specimens were brushed either in toothpaste slurry or with toothpaste in artificial saliva for 15 s. Enamel loss was calculated from the change in indentation depth of the same indent before and after abrasion. Mean surface losses (95% CI) were recorded in ten treatment groups: (1) soft toothbrush only [28 (17-39) nm]; (2) hard toothbrush only [25 (16-34) nm]; (3) soft toothbrush in Sensodyne MultiCare slurry [46 (27-65) nm]; (4) hard toothbrush in Sensodyne MultiCare slurry [45 (24-66) nm]; (5) soft toothbrush in Colgate sensation white slurry [71 (55-87) nm]; (6) hard toothbrush in Colgate sensation white slurry [85 (60-110) nm]; (7) soft toothbrush with Sensodyne MultiCare [48 (39-57) nm]; (8) hard toothbrush with Sensodyne MultiCare [40 (29-51) nm]; (9) soft toothbrush with Colgate sensation white [51 (37-65) nm]; (10) hard toothbrush with Colgate sensation white [52 (36-68) nm]. Neither soft nor hard toothbrushes produced significantly different toothbrush abrasion of softened human enamel in this model (p > 0.05).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE The cost-effectiveness of cast nonprecious frameworks has increased their prevalence in cemented implant crowns. The purpose of this study was to assess the effect of the design and height of the retentive component of a standard titanium implant abutment on the fit, possible horizontal rotation and retention forces of cast nonprecious alloy crowns prior to cementation. MATERIALS AND METHODS Two abutment designs were examined: Type A with a 6° taper and 8 antirotation planes (Straumann Tissue-Level RN) and Type B with a 7.5° taper and 1 antirotation plane (SICace implant). Both types were analyzed using 60 crowns: 20 with a full abutment height (6 mm), 20 with a medium abutment height (4 mm), and 20 with a minimal (2.5 mm) abutment height. The marginal and internal fit and the degree of possible rotation were evaluated by using polyvinylsiloxane impressions under a light microscope (magnification of ×50). To measure the retention force, a custom force-measuring device was employed. STATISTICAL ANALYSIS one-sided Wilcoxon rank-sum tests with Bonferroni-Holm corrections, Fisher's exact tests, and Spearman's rank correlation coefficient. RESULTS Type A exhibited increased marginal gaps (primary end-point: 55 ± 20 μm vs. 138 ± 59 μm, P < 0.001) but less rotation (P < 0.001) than Type B. The internal fit was also better for Type A than for Type B (P < 0.001). The retention force of Type A (2.49 ± 3.2 N) was higher (P = 0.019) than that of Type B (1.27 ± 0.84 N). Reduction in abutment height did not affect the variables observed. CONCLUSION Less-tapered abutments with more antirotation planes provide an increase in the retention force, which confines the horizontal rotation but widens the marginal gaps of the crowns. Thus, casting of nonprecious crowns with Type A abutments may result in clinically unfavorable marginal gaps.