12 resultados para meals
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A novel adaptive approach for glucose control in individuals with type 1 diabetes under sensor-augmented pump therapy is proposed. The controller, is based on Actor-Critic (AC) learning and is inspired by the principles of reinforcement learning and optimal control theory. The main characteristics of the proposed controller are (i) simultaneous adjustment of both the insulin basal rate and the bolus dose, (ii) initialization based on clinical procedures, and (iii) real-time personalization. The effectiveness of the proposed algorithm in terms of glycemic control has been investigated in silico in adults, adolescents and children under open-loop and closed-loop approaches, using announced meals with uncertainties in the order of ±25% in the estimation of carbohydrates. The results show that glucose regulation is efficient in all three groups of patients, even with uncertainties in the level of carbohydrates in the meal. The percentages in the A+B zones of the Control Variability Grid Analysis (CVGA) were 100% for adults, and 93% for both adolescents and children. The AC based controller seems to be a promising approach for the automatic adjustment of insulin infusion in order to improve glycemic control. After optimization of the algorithm, the controller will be tested in a clinical trial.
Resumo:
Intramyocellular lipids (IMCL) and muscle glycogen provide local energy during exercise (EX). The objective of this study was to clarify the role of high versus low IMCL levels at equal initial muscle glycogen on fuel selection during EX. After 3 h of depleting exercise, 11 endurance-trained males consumed in a crossover design a high-carbohydrate (7 g kg(-1) day(-1)) low-fat (0.5 g kg(-1) day(-1)) diet (HC) for 2.5 days or the same diet with 3 g kg(-1) day(-1) more fat provided during the last 1.5 days of diet (four meals; HCF). Respiratory exchange, thigh muscle substrate breakdown by magnetic resonance spectroscopy, and plasma FFA oxidation ([1-(13)C]palmitate) were measured during EX (3 h, 50% W (max)). Pre-EX IMCL concentrations were 55% higher after HCF. IMCL utilization during EX in HCF was threefold greater compared with HC (P < 0.001) and was correlated with aerobic power and highly correlated (P < 0.001) with initial content. Glycogen values and decrements during EX were similar. Whole-body fat oxidation (Fat(ox)) was similar overall and plasma FFA oxidation smaller (P < 0.05) during the first EX hour after HCF. Myocellular fuels contributed 8% more to whole-body energy demands after HCF (P < 0.05) due to IMCL breakdown (27% Fat(ox)). After EX, when both IMCL and glycogen concentrations were again similar across trials, a simulated 20-km time-trial showed no difference in performance between diets. In conclusion, IMCL concentrations can be increased during a glycogen loading diet by consuming additional fat for the last 1.5 days. During subsequent exercise, IMCL decrease in proportion to their initial content, partly in exchange for peripheral fatty acids.
Resumo:
Clinical studies indicate that exaggerated postprandial lipemia is linked to the progression of atherosclerosis, leading cause of Cardiovascular Diseases (CVD). CVD is a multi-factorial disease with complex etiology and according to the literature postprandial Triglycerides (TG) can be used as an independent CVD risk factor. Aim of the current study is to construct an Artificial Neural Network (ANN) based system for the identification of the most important gene-gene and/or gene-environmental interactions that contribute to a fast or slow postprandial metabolism of TG in blood and consequently to investigate the causality of postprandial TG response. The design and development of the system is based on a dataset of 213 subjects who underwent a two meals fatty prandial protocol. For each of the subjects a total of 30 input variables corresponding to genetic variations, sex, age and fasting levels of clinical measurements were known. Those variables provide input to the system, which is based on the combined use of Parameter Decreasing Method (PDM) and an ANN. The system was able to identify the ten (10) most informative variables and achieve a mean accuracy equal to 85.21%.
Resumo:
In this paper, an Insulin Infusion Advisory System (IIAS) for Type 1 diabetes patients, which use insulin pumps for the Continuous Subcutaneous Insulin Infusion (CSII) is presented. The purpose of the system is to estimate the appropriate insulin infusion rates. The system is based on a Non-Linear Model Predictive Controller (NMPC) which uses a hybrid model. The model comprises a Compartmental Model (CM), which simulates the absorption of the glucose to the blood due to meal intakes, and a Neural Network (NN), which simulates the glucose-insulin kinetics. The NN is a Recurrent NN (RNN) trained with the Real Time Recurrent Learning (RTRL) algorithm. The output of the model consists of short term glucose predictions and provides input to the NMPC, in order for the latter to estimate the optimum insulin infusion rates. For the development and the evaluation of the IIAS, data generated from a Mathematical Model (MM) of a Type 1 diabetes patient have been used. The proposed control strategy is evaluated at multiple meal disturbances, various noise levels and additional time delays. The results indicate that the implemented IIAS is capable of handling multiple meals, which correspond to realistic meal profiles, large noise levels and time delays.
Resumo:
The circadian clock orchestrates many aspects of human physiology, and disruption of this clock has been implicated in various pathologies, ranging from cancer to metabolic syndrome and diabetes. Although there is evidence that metabolism and the circadian clockwork are intimately linked on a transcriptional level, whether these effects are directly under clock control or are mediated by the rest-activity cycle and the timing of food intake is unclear. To answer this question, we conducted an unbiased screen in human subjects of the metabolome of blood plasma and saliva at different times of day. To minimize indirect effects, subjects were kept in a 40-h constant routine of enforced posture, constant dim light, hourly isocaloric meals, and sleep deprivation. Under these conditions, we found that ~15% of all identified metabolites in plasma and saliva were under circadian control, most notably fatty acids in plasma and amino acids in saliva. Our data suggest that there is a strong direct effect of the endogenous circadian clock on multiple human metabolic pathways that is independent of sleep or feeding. In addition, they identify multiple potential small-molecule biomarkers of human circadian phase and sleep pressure.
Resumo:
Background: Individuals with type 1 diabetes (T1D) have to count the carbohydrates (CHOs) of their meal to estimate the prandial insulin dose needed to compensate for the meal’s effect on blood glucose levels. CHO counting is very challenging but also crucial, since an error of 20 grams can substantially impair postprandial control. Method: The GoCARB system is a smartphone application designed to support T1D patients with CHO counting of nonpacked foods. In a typical scenario, the user places a reference card next to the dish and acquires 2 images with his/her smartphone. From these images, the plate is detected and the different food items on the plate are automatically segmented and recognized, while their 3D shape is reconstructed. Finally, the food volumes are calculated and the CHO content is estimated by combining the previous results and using the USDA nutritional database. Results: To evaluate the proposed system, a set of 24 multi-food dishes was used. For each dish, 3 pairs of images were taken and for each pair, the system was applied 4 times. The mean absolute percentage error in CHO estimation was 10 ± 12%, which led to a mean absolute error of 6 ± 8 CHO grams for normal-sized dishes. Conclusion: The laboratory experiments demonstrated the feasibility of the GoCARB prototype system since the error was below the initial goal of 20 grams. However, further improvements and evaluation are needed prior launching a system able to meet the inter- and intracultural eating habits.
Resumo:
Background: In an artificial pancreas (AP), the meals are either manually announced or detected and their size estimated from the blood glucose level. Both methods have limitations, which result in suboptimal postprandial glucose control. The GoCARB system is designed to provide the carbohydrate content of meals and is presented within the AP framework. Method: The combined use of GoCARB with a control algorithm is assessed in a series of 12 computer simulations. The simulations are defined according to the type of the control (open or closed loop), the use or not-use of GoCARB and the diabetics’ skills in carbohydrate estimation. Results: For bad estimators without GoCARB, the percentage of the time spent in target range (70-180 mg/dl) during the postprandial period is 22.5% and 66.2% for open and closed loop, respectively. When the GoCARB is used, the corresponding percentages are 99.7% and 99.8%. In case of open loop, the time spent in severe hypoglycemic events (<50 mg/dl) is 33.6% without the GoCARB and is reduced to 0.0% when the GoCARB is used. In case of closed loop, the corresponding percentage is 1.4% without the GoCARB and is reduced to 0.0% with the GoCARB. Conclusion: The use of GoCARB improves the control of postprandial response and glucose profiles especially in the case of open loop. However, the most efficient regulation is achieved by the combined use of the control algorithm and the GoCARB.
Resumo:
Smartphone-App zur Kohlenhydratberechnung Neue Technologien wie Blutzuckersensoren und moderne Insulinpumpen prägten die Therapie des Typ-1-Diabetes (T1D) in den letzten Jahren in wesentlichem Ausmaß. Smartphones sind aufgrund ihrer rasanten technischen Entwicklung eine weitere Plattform für Applikationen zur Therapieunterstützung bei T1D. GoCARB Hierbei handelt es sich um ein zur Kohlenhydratberechnung entwickeltes System für Personen mit T1D. Die Basis für Endanwender stellt ein Smartphone mit Kamera dar. Zur Berechnung werden 2 mit dem Smartphone aus verschiedenen Winkeln aufgenommene Fotografien einer auf einem Teller angerichteten Mahlzeit benötigt. Zusätzlich ist eine neben dem Teller platzierte Referenzkarte erforderlich. Die Grundlage für die Kohlenhydratberechnung ist ein Computer-Vision-gestütztes Programm, das die Mahlzeiten aufgrund ihrer Farbe und Textur erkennt. Das Volumen der Mahlzeit wird mit Hilfe eines dreidimensional errechneten Modells bestimmt. Durch das Erkennen der Art der Mahlzeiten sowie deren Volumen kann GoCARB den Kohlenhydratanteil unter Einbeziehung von Nährwerttabellen berechnen. Für die Entwicklung des Systems wurde eine Bilddatenbank von mehr als 5000 Mahlzeiten erstellt und genutzt. Resümee Das GoCARB-System befindet sich aktuell in klinischer Evaluierung und ist noch nicht für Patienten verfügbar.
Resumo:
Background: Diabetes mellitus is spreading throughout the world and diabetic individuals have been shown to often assess their food intake inaccurately; therefore, it is a matter of urgency to develop automated diet assessment tools. The recent availability of mobile phones with enhanced capabilities, together with the advances in computer vision, have permitted the development of image analysis apps for the automated assessment of meals. GoCARB is a mobile phone-based system designed to support individuals with type 1 diabetes during daily carbohydrate estimation. In a typical scenario, the user places a reference card next to the dish and acquires two images using a mobile phone. A series of computer vision modules detect the plate and automatically segment and recognize the different food items, while their 3D shape is reconstructed. Finally, the carbohydrate content is calculated by combining the volume of each food item with the nutritional information provided by the USDA Nutrient Database for Standard Reference. Objective: The main objective of this study is to assess the accuracy of the GoCARB prototype when used by individuals with type 1 diabetes and to compare it to their own performance in carbohydrate counting. In addition, the user experience and usability of the system is evaluated by questionnaires. Methods: The study was conducted at the Bern University Hospital, “Inselspital” (Bern, Switzerland) and involved 19 adult volunteers with type 1 diabetes, each participating once. Each study day, a total of six meals of broad diversity were taken from the hospital’s restaurant and presented to the participants. The food items were weighed on a standard balance and the true amount of carbohydrate was calculated from the USDA nutrient database. Participants were asked to count the carbohydrate content of each meal independently and then by using GoCARB. At the end of each session, a questionnaire was completed to assess the user’s experience with GoCARB. Results: The mean absolute error was 27.89 (SD 38.20) grams of carbohydrate for the estimation of participants, whereas the corresponding value for the GoCARB system was 12.28 (SD 9.56) grams of carbohydrate, which was a significantly better performance ( P=.001). In 75.4% (86/114) of the meals, the GoCARB automatic segmentation was successful and 85.1% (291/342) of individual food items were successfully recognized. Most participants found GoCARB easy to use. Conclusions: This study indicates that the system is able to estimate, on average, the carbohydrate content of meals with higher accuracy than individuals with type 1 diabetes can. The participants thought the app was useful and easy to use. GoCARB seems to be a well-accepted supportive mHealth tool for the assessment of served-on-a-plate meals.