7 resultados para maternal weight
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND Intrauterine growth restriction (IUGR) occurs in up to 10% of pregnancies and is considered as a major risk to develop various diseases in adulthood, such as cardiovascular diseases, insulin resistance, hypertension or end stage kidney disease. Several IUGR models have been developed in order to understand the biological processes linked to fetal growth retardation, most of them being rat or mouse models and nutritional models. In order to reproduce altered placental flow, surgical models have also been developed, and among them bilateral uterine ligation has been frequently used. Nevertheless, this model has never been developed in the mouse, although murine tools display multiple advantages for biological research. The aim of this work was therefore to develop a mouse model of bilateral uterine ligation as a surgical model of IUGR. RESULTS In this report, we describe the set up and experimental data obtained from three different protocols (P1, P2, P3) of bilateral uterine vessel ligation in the mouse. Ligation was either performed at the cervical end of each uterine horn (P1) or at the central part of each uterine horn (P2 and P3). Time of surgery was E16 (P1), E17 (P2) or E16.5 (P3). Mortality, maternal weight and abortion parameters were recorded, as well as placentas weights, fetal resorption, viability, fetal weight and size. Results showed that P1 in test animals led to IUGR but was also accompanied with high mortality rate of mothers (50%), low viability of fetuses (8%) and high resorption rate (25%). P2 and P3 improved most of these parameters (decreased mortality and improved pregnancy outcomes; improved fetal viability to 90% and 27%, respectively) nevertheless P2 was not associated to IUGR contrary to P3. Thus P3 experimental conditions enable IUGR with better pregnancy and fetuses outcomes parameters that allow its use in experimental studies. CONCLUSIONS Our results show that bilateral uterine artery ligation according to the protocol we have developed and validated can be used as a surgical mouse model of IUGR.
Resumo:
There are increasing reports on hypernatremia, a potentially devastating condition, in exclusively breastfed newborn infants. Our purposes were to describe the clinical features of the condition and identify the risk factors for it. We performed a review of the existing literature in the National Library of Medicine database and in the search engine Google Scholar. A total of 115 reports were included in the final analysis. Breastfeeding-associated neonatal hypernatremia was recognized in infants who were ≤ 21 days of age and had ≥ 10% weight loss of birth weight. Cesarean delivery, primiparity, breast anomalies or breastfeeding problems, excessive prepregnancy maternal weight, delayed first breastfeeding, lack of previous breastfeeding experience, and low maternal education level were significantly associated with breastfeeding-associated hypernatremia. In addition to excessive weight loss (≥ 10%), the following clinical findings were observed: poor feeding, poor hydration state, jaundice, excessive body temperature, irritability or lethargy, decreased urine output, and epileptic seizures. In conclusion, the present survey of the literature identifies the following risk factors for breastfeeding-associated neonatal hypernatremia: cesarean delivery, primiparity, breastfeeding problems, excessive maternal body weight, delayed breastfeeding, lack of previous breastfeeding experience, and low maternal education level.
Resumo:
Two F(2) Charolais x German Holstein families comprising full and half sibs share identical but reciprocal paternal and maternal Charolais grandfathers differ in milk production. We hypothesized that differences in milk production were related to differences in nutritional partitioning revealed by glucose metabolism and carcass composition. In 18F(2) cows originating from mating Charolais bulls to German Holstein cows and a following intercross of the F(1) individuals (n=9 each for family Ab and Ba; capital letters indicate the paternal and lowercase letter the maternal grandsire), glucose tolerance tests were performed at 10 d before calving and 30 and 93 d in milk (DIM) during second lactation. Glucose half-time as well as areas under the concentration curve for plasma glucose and insulin were calculated. At 94 DIM cows were infused intravenously with 18.3 micromol of d-[U-(13)C(6)]glucose/kg(0.75) of BW, and blood samples were taken to measure rate of glucose appearance and glucose oxidation as well as plasma concentrations of metabolites and hormones. Cows were slaughtered at 100 DIM and carcass size and composition was evaluated. Liver samples were taken to measure glycogen and fat content, gene expression levels, and enzyme activities of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, and glucose 6-phosphatase as well as gene expression of glucose transporter 2. Milk yield was higher and milk protein content at 30 DIM was lower in Ba than in Ab cows. Glucose half-life was higher but insulin secretion after glucose challenge was lower in Ba than in Ab cows. Cows of Ab showed higher glucose oxidation, and plasma concentrations at 94 DIM were lower for glucose and insulin, whereas beta-hydroxybutyrate was higher in Ba cows. Hepatic gene expression of pyruvate carboxylase, glucose 6-phosphatase, and glucose transporter 2 were higher whereas phosphoenolpyruvate carboxykinase activities were lower in Ba than in Ab cows. Carcass weight as well as fat content of the carcass were higher in Ab than in Ba cows, whereas mammary gland mass was lower in Ab than in Ba cows. Fat classification indicated leaner carcass composition in Ba than in Ab cows. In conclusion, the 2 families showed remarkable differences in milk production that were accompanied by changes in glucose metabolism and body composition, indicating capacity for milk production as main metabolic driving force. Sex chromosomal effects provide an important regulatory mechanism for milk performance and nutrient partitioning that requires further investigation.
Resumo:
While having the highest vitamin C (VitC) concentrations in the body, specific functions of VitC in the brain have only recently been acknowledged. We have shown that postnatal VitC deficiency in guinea pigs causes impairment of hippocampal memory function and leads to 30% less neurons. This study investigates how prenatal VitC deficiency affects postnatal hippocampal development and if any such effect can be reversed by postnatal VitC repletion. Eighty pregnant Dunkin Hartley guinea pig dams were randomized into weight stratified groups receiving High (900 mg) or Low (100 mg) VitC per kg diet. Newborn pups (n = 157) were randomized into a total of four postnatal feeding regimens: High/High (Control); High/Low (Depleted), Low/Low (Deficient); and Low/High (Repleted). Proliferation and migration of newborn cells in the dentate gyrus was assessed by BrdU labeling and hippocampal volumes were determined by stereology. Prenatal VitC deficiency resulted in a significant reduction in postnatal hippocampal volume (P<0.001) which was not reversed by postnatal repletion. There was no difference in postnatal cellular proliferation and survival rates in the hippocampus between dietary groups, however, migration of newborn cells into the granular layer of the hippocampus dentate gyrus was significantly reduced in prenatally deficient animals (P<0.01). We conclude that a prenatal VitC deficiency in guinea pigs leads to persistent impairment of postnatal hippocampal development which is not alleviated by postnatal repletion. Our findings place attention on a yet unrecognized consequence of marginal VitC deficiency during pregnancy.
Resumo:
Small for gestational age neonates (SGA) could be subdivided into two groups according to the underlying causes leading to low birth weight. Intrauterine growth restriction (IUGR) is a pathologic condition with diminished growth velocity and fetal compromised well-being, while non-growth restricted SGA neonates are constitutionally (genetically determined) small. Antenatal sonographic measurements are used to differentiate these two subgroups. Maternal metabolic changes contribute to the pathogenesis of IUGR. A disturbed lipid metabolism and cholesterol supply might affect the fetus, with consequences for fetal programming of cardiovascular diseases. We evaluated fetal serum lipids and hypothesized a more atherogenic lipoprotein profile in IUGR fetuses.
Resumo:
Maternal-fetal calcium (Ca(2+)) transport is crucial for fetal Ca(2+) homeostasis and bone mineralization. In this study, the physiological significance of the transient receptor potential, vanilloid 6 (TRPV6) Ca(2+) channel in maternal-fetal Ca(2+) transport was investigated using Trpv6 knockout mice. The Ca(2+) concentration in fetal blood and amniotic fluid was significantly lower in Trpv6 knockout fetuses than in wildtypes. The transport activity of radioactive Ca(2+) ((45)Ca) from mother to fetuses was 40% lower in Trpv6 knockout fetuses than in wildtypes. The ash weight was also lower in Trpv6 knockout fetuses compared with wildtype fetuses. TRPV6 mRNA and protein were mainly localized in intraplacental yolk sac and the visceral layer of extraplacental yolk sac, which are thought to be the places for maternal-fetal Ca(2+) transport in mice. These expression sites were co-localized with calbindin D(9K) in the yolk sac. In wildtype mice, placental TRPV6 mRNA increased 14-fold during the last 4 days of gestation, which coincides with fetal bone mineralization. These results provide the first in vivo evidence that TRPV6 is involved in maternal-fetal Ca(2+) transport. We propose that TRPV6 functions as a Ca(2+) entry pathway, which is critical for fetal Ca(2+) homeostasis.
Resumo:
BACKGROUND Fetal weight estimation (FWE) is an important factor for clinical management decisions, especially in imminent preterm birth at the limit of viability between 23(0/7) and 26(0/7) weeks of gestation. It is crucial to detect and eliminate factors that have a negative impact on the accuracy of FWE. DATA SOURCES In this systematic literature review, we investigated 14 factors that may influence the accuracy of FWE, in particular in preterm neonates born at the limit of viability. RESULTS We found that gestational age, maternal body mass index, amniotic fluid index and ruptured membranes, presentation of the fetus, location of the placenta and the presence of multiple fetuses do not seem to have an impact on FWE accuracy. The influence of the examiner's grade of experience and that of fetal gender were discussed controversially. Fetal weight, time interval between estimation and delivery and the use of different formulas seem to have an evident effect on FWE accuracy. No results were obtained on the impact of active labor. DISCUSSION This review reveals that only few studies investigated factors possibly influencing the accuracy of FWE in preterm neonates at the limit of viability. Further research in this specific age group on potential confounding factors is needed.