7 resultados para mass transfer
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Transport of volatile hydrocarbons in soils is largely controlled by interactions of vapours with the liquid and solid phase. Sorption on solids of gaseous or dissolved comPounds may be important. Since the contact time between a chemical and a specific sorption site can be rather short, kinetic or mass-transfer resistance effects may be relevant. An existing mathematical model describing advection and diffusion in the gas phase and diffusional transport from the gaseous phase into an intra-aggregate water phase is modified to include linear kinetic sorption on ps-solid and water-solid interfaces. The model accounts for kinetic mass transfer between all three phases in a soil. The solution of the Laplace-transformed equations is inverted numerically. We performed transient column experiments with 1,1,2-Trichloroethane, Trichloroethylene, and Tetrachloroethylene using air-dry solid and water-saturated porous glass beads. The breakthrough curves were calculated based on independently estimated parameters. The model calculations agree well with experimental data. The different transport behaviour of the three compounds in our system primarily depends on Henry's constants.
Resumo:
Gas diffusion research in soils covers, to a large extent, the transport behavior of practically insoluble gases. We extend the mathematical description of gas transport to include reactive gaseous components that hydrolyze in water such as SO2 and CO2. The path between the free atmosphere and the microporous niches is modeled by assuming penetration through gas-filled macropores, air-water phase transfer, and diffusion and speciation in the liquid phase. For hydrolyzable gases, the rate of mass transfer into and the total absorption capacity of the soil solution may be high. Both the capacity and the transfer rate are influenced by the soil-solution pH; for high pH, they become extremely high for SO2. The soil absorption of such gases is also influenced by soil structure. Well-aerated, near-neutral soils are a potentially important sink for SO2.
Resumo:
This paper addresses the microscale heat transfer problem from heated lattice to the gas. A micro-device for enhanced heat transfer is presented and numerically investigated. Thermal creep induces 3-D vortex structures in the vicinity of the lattice. The gas flow is in the slip flow regime (Knudsen number Kn⩽0.1Kn⩽0.1). The simulations are performed using slip flow Navier–Stokes equations with boundary condition formulations proposed by Maxwell and Smoluchowski. In this study the wire thicknesses and distances of the heated lattice are varied. The surface geometrical properties alter significantly heat flux through the surface.
Resumo:
Low viscosity domains such as localized shear zones exert an important control on the geodynamics of the uppermost mantle. Grain size reduction and subsequent strain localization related to a switch from dislocation to diffusion creep is one mechanism to form low viscosity domains. To sustain strain localization, the grain size of mantle minerals needs to be kept small over geological timescales. One way to keep olivine grain sizes small is by pinning of mobile grain boundaries during grain growth by other minerals (second phases). Detailed microstructural studies based on natural samples from three shear zones formed at different geodynamic settings, allowed the derivation of the olivine grain-size dependence on the second-phase content. The polymineralic olivine grain-size evolution with increasing strain is similar in the three shear zones. If the second phases are to pin the mobile olivine grain boundary the phases need to be well mixed before grain growth. We suggest that melt-rock and metamorphic reactions are crucial for the initial phase mixing in mantle rocks. With ongoing deformation and increasing strain, grain boundary sliding combined with mass transfer processes and nucleation of grains promotes phase mixing resulting in fine-grained polymineralic mixtures that deform by diffusion creep. Strain localization due to the presence of volumetrically minor minerals in polymineralic mantle rocks is only important at high strain deformation (ultramylonites) at low temperatures (<~800°C). At smaller strain and stress conditions and/or higher temperatures other parameters like overall energy available to deform a given rock volume, the inheritance of mechanical anisotropies or the presence of water or melts needs to be considered to explain strain localization in the upper mantle.
Resumo:
Natural deformation in carbonate mylonites bearing sheet silicates occurs via a complex interaction of granular flow and solution transfer processes and involves continuous cycles of dissolution, grain boundary diffusion, nucleation and growth. In this way, new sheet silicates (a) nucleate within voids formed by grain boundary sliding of calcite grains. (b) grow, and (c) rotate towards the shear plane. As a consequence, small mica grains show a wide range of orientations with respect to the shear plane, but moderate to large grains are subparallel both to each other and to the shear plane. Increases of average grain sizes with increasing temperature of sheet silicates in mica-rich layers is more pronounced than in mica-poor layers. In the calcitic matrix however, sheet silicates can only grow via solution-precipitation and mass transfer processes. Therefore, the observed grain size variability indicates drastic differences in mass transfer behavior between the individual layers, which might be related to differences in the fluid flux. Based on these observations, a conceptual model for the microfabric evolution in sheet silicate bearing mylonites is presented. © 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Serpentinites release at sub-arc depths volatiles and several fluid-mobile trace elements found in arc magmas. Constraining element uptake in these rocks and defining the trace element composition of fluids released upon serpentinite dehydration can improve our understanding of mass transfer across subduction zones and to volcanic arcs. The eclogite-facies garnet metaperidotite and chlorite harzburgite bodies embedded in paragneiss of the subduction melange from Cima di Gagnone derive from serpentinized peridotite protoliths and are unique examples of ultramafic rocks that experienced subduction metasomatism and devolatilization. In these rocks, metamorphic olivine and garnet trap polyphase inclusions representing the fluid released during high-pressure breakdown of antigorite and chlorite. Combining major element mapping and laser-ablation ICP-MS bulk inclusion analysis, we characterize the mineral content of polyphase inclusions and quantify the fluid composition. Silicates, Cl-bearing phases, sulphides, carbonates, and oxides document post-entrapment mineral growth in the inclusions starting immediately after fluid entrapment. Compositional data reveal the presence of two different fluid types. The first (type A) records a fluid prominently enriched in fluid-mobile elements, with Cl, Cs, Pb, As, Sb concentrations up to 10(3) PM (primitive mantle), similar to 10(2) PM Tit Ba, while Rb, B, Sr, Li, U concentrations are of the order of 10(1) PM, and alkalis are similar to 2 PM. The second fluid (type B) has considerably lower fluid-mobile element enrichments, but its enrichment patterns are comparable to type A fluid. Our data reveal multistage fluid uptake in these peridotite bodies, including selective element enrichment during seafloor alteration, followed by fluid-rock interaction along with subduction metamorphism in the plate interface melange. Here, infiltration of sediment-equilibrated fluid produced significant enrichment of the serpentinites in As, Sb, B, Pb, an enriched trace element pattern that was then transferred to the fluid released at greater depth upon serpentine dehydration (type A fluid). The type B fluid hosted by garnet may record the composition of the chlorite breakdown fluid released at even greater depth. The Gagnone study-case demonstrates that serpentinized peridotites acquire water and fluid-mobile elements during ocean floor hydration and through exchange with sediment-equilibrated fluids in the early subduction stages. Subsequent antigorite devolatilization at subarc depths delivers aqueous fluids to the mantle wedge that can be prominently enriched in sediment-derived components, potentially triggering arc magmatism without the need of concomitant dehydration/melting of metasediments or altered oceanic crust.