19 resultados para markov chain model

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose an intelligent method, named the Novelty Detection Power Meter (NodePM), to detect novelties in electronic equipment monitored by a smart grid. Considering the entropy of each device monitored, which is calculated based on a Markov chain model, the proposed method identifies novelties through a machine learning algorithm. To this end, the NodePM is integrated into a platform for the remote monitoring of energy consumption, which consists of a wireless sensors network (WSN). It thus should be stressed that the experiments were conducted in real environments different from many related works, which are evaluated in simulated environments. In this sense, the results show that the NodePM reduces by 13.7% the power consumption of the equipment we monitored. In addition, the NodePM provides better efficiency to detect novelties when compared to an approach from the literature, surpassing it in different scenarios in all evaluations that were carried out.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The aim of our study was to develop a modeling framework suitable to quantify the incidence, absolute number and economic impact of osteoporosis-attributable hip, vertebral and distal forearm fractures, with a particular focus on change over time, and with application to the situation in Switzerland from 2000 to 2020. A Markov process model was developed and analyzed by Monte Carlo simulation. A demographic scenario provided by the Swiss Federal Statistical Office and various Swiss and international data sources were used as model inputs. Demographic and epidemiologic input parameters were reproduced correctly, confirming the internal validity of the model. The proportion of the Swiss population aged 50 years or over will rise from 33.3% in 2000 to 41.3% in 2020. At the total population level, osteoporosis-attributable incidence will rise from 1.16 to 1.54 per 1,000 person-years in the case of hip fracture, from 3.28 to 4.18 per 1,000 person-years in the case of radiographic vertebral fracture, and from 0.59 to 0.70 per 1,000 person-years in the case of distal forearm fracture. Osteoporosis-attributable hip fracture numbers will rise from 8,375 to 11,353, vertebral fracture numbers will rise from 23,584 to 30,883, and distal forearm fracture numbers will rise from 4,209 to 5,186. Population-level osteoporosis-related direct medical inpatient costs per year will rise from 713.4 million Swiss francs (CHF) to CHF946.2 million. These figures correspond to 1.6% and 2.2% of Swiss health care expenditures in 2000. The modeling framework described can be applied to a wide variety of settings. It can be used to assess the impact of new prevention, diagnostic and treatment strategies. In Switzerland incidences of osteoporotic hip, vertebral and distal forearm fracture will rise by 33%, 27%, and 19%, respectively, between 2000 and 2020, if current prevention and treatment patterns are maintained. Corresponding absolute fracture numbers will rise by 36%, 31%, and 23%. Related direct medical inpatient costs are predicted to increase by 33%; however, this estimate is subject to uncertainty due to limited availability of input data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Oscillations between high and low values of the membrane potential (UP and DOWN states respectively) are an ubiquitous feature of cortical neurons during slow wave sleep and anesthesia. Nevertheless, a surprisingly small number of quantitative studies have been conducted only that deal with this phenomenon’s implications for computation. Here we present a novel theory that explains on a detailed mathematical level the computational benefits of UP states. The theory is based on random sampling by means of interspike intervals (ISIs) of the exponential integrate and fire (EIF) model neuron, such that each spike is considered a sample, whose analog value corresponds to the spike’s preceding ISI. As we show, the EIF’s exponential sodium current, that kicks in when balancing a noisy membrane potential around values close to the firing threshold, leads to a particularly simple, approximative relationship between the neuron’s ISI distribution and input current. Approximation quality depends on the frequency spectrum of the current and is improved upon increasing the voltage baseline towards threshold. Thus, the conceptually simpler leaky integrate and fire neuron that is missing such an additional current boost performs consistently worse than the EIF and does not improve when voltage baseline is increased. For the EIF in contrast, the presented mechanism is particularly effective in the high-conductance regime, which is a hallmark feature of UP-states. Our theoretical results are confirmed by accompanying simulations, which were conducted for input currents of varying spectral composition. Moreover, we provide analytical estimations of the range of ISI distributions the EIF neuron can sample from at a given approximation level. Such samples may be considered by any algorithmic procedure that is based on random sampling, such as Markov Chain Monte Carlo or message-passing methods. Finally, we explain how spike-based random sampling relates to existing computational theories about UP states during slow wave sleep and present possible extensions of the model in the context of spike-frequency adaptation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The absolute sign of local polarity in relation to the biological growth direction has been investigated for teeth cementum using phase sensitive second harmonic generation microscopy (PS-SHGM) and a crystal of 2-cyclooctylamino-5-nitropyridine (COANP) as a nonlinear optic (NLO) reference material. A second harmonic generation (SHG) response was found in two directions of cementum: radial (acellular extrinsic fibers that are oriented more or less perpendicular to the root surface) and circumferential (cellular intrinsic fibers that are oriented more or less parallel to the surface). A mono-polar state was demonstrated for acellular extrinsic cementum. However, along the different parts of cementum in circumferential direction, two corresponding domains were observed featuring an opposite sign of polarity indicative for a bi-polar microscopic state of cellular intrinsic cementum. The phase information showed that the orientation of radial collagen fibrils of cementum is regularly organized with the donor (D) groups pointing to the surface. Circumferential collagen molecules feature orientational disorder and are oriented up and down in random manner showing acceptor or donor groups at the surface of cementum. Considering that the cementum continues to grow in thickness throughout life, we can conclude that the cementum is growing circumferentially in two opposite directions and radially in one direction. A Markov chain type model for polarity formation in the direction of growth predicts D-groups preferably appearing at the fiber front.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this article we propose an exact efficient simulation algorithm for the generalized von Mises circular distribution of order two. It is an acceptance-rejection algorithm with a piecewise linear envelope based on the local extrema and the inflexion points of the generalized von Mises density of order two. We show that these points can be obtained from the roots of polynomials and degrees four and eight, which can be easily obtained by the methods of Ferrari and Weierstrass. A comparative study with the von Neumann acceptance-rejection, with the ratio-of-uniforms and with a Markov chain Monte Carlo algorithms shows that this new method is generally the most efficient.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

OBJECTIVE To investigate the evolution of delirium of nursing home (NH) residents and their possible predictors. DESIGN Post-hoc analysis of a prospective cohort assessment. SETTING Ninety NHs in Switzerland. PARTICIPANTS Included 14,771 NH residents. MEASUREMENTS The Resident Assessment Instrument Minimum Data Set and the Nursing Home Confusion Assessment Method were used to determine follow-up of subsyndromal or full delirium in NH residents using discrete Markov chain modeling to describe long-term trajectories and multiple logistic regression analyses to determine predictors of the trajectories. RESULTS We identified four major types of delirium time courses in NH. Increasing severity of cognitive impairment and of depressive symptoms at the initial assessment predicted the different delirium time courses. CONCLUSION More pronounced cognitive impairment and depressive symptoms at the initial assessment are associated with different subsequent evolutions of delirium. The presence and evolution of delirium in the first year after NH admission predicted the subsequent course of delirium until death.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the main problems of flood hazard assessment in ungauged or poorly gauged basins is the lack of runoff data. In an attempt to overcome this problem we have combined archival records, dendrogeomorphic time series and instrumental data (daily rainfall and discharge) from four ungauged and poorly gauged mountain basins in Central Spain with the aim of reconstructing and compiling information on 41 flash flood events since the end of the 19th century. Estimation of historical discharge and the incorporation of uncertainty for the at-site and regional flood frequency analysis were performed with an empirical rainfall–runoff assessment as well as stochastic and Bayesian Markov Chain Monte Carlo (MCMC) approaches. Results for each of the ungauged basins include flood frequency, severity, seasonality and triggers (synoptic meteorological situations). The reconstructed data series clearly demonstrates how uncertainty can be reduced by including historical information, but also points to the considerable influence of different approaches on quantile estimation. This uncertainty should be taken into account when these data are used for flood risk management.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Single-molecule force spectroscopy (SMFS) provides detailed insight into the mechanical (un)folding pathways and structural stability of membrane proteins. So far, SMFS could only be applied to membrane proteins embedded in native or synthetic membranes adsorbed to solid supports. This adsorption causes experimental limitations and raises the question to what extent the support influences the results obtained by SMFS. Therefore, we introduce here SMFS from native purple membrane freely spanning across nanopores. We show that correct analysis of the SMFS data requires extending the worm-like chain model, which describes the mechanical stretching of a polypeptide, by the cubic extension model, which describes the bending of a purple membrane exposed to mechanical stress. This new experimental and theoretical approach allows to characterize the stepwise (un)folding of the membrane protein bacteriorhodopsin and to assign the stability of single and grouped secondary structures. The (un)folding and stability of bacteriorhodopsin shows no significant difference between freely spanning and directly supported purple membranes. Importantly, the novel experimental SMFS setup opens an avenue to characterize any protein from freely spanning cellular or synthetic membranes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We propose a new and clinically oriented approach to perform atlas-based segmentation of brain tumor images. A mesh-free method is used to model tumor-induced soft tissue deformations in a healthy brain atlas image with subsequent registration of the modified atlas to a pathologic patient image. The atlas is seeded with a tumor position prior and tumor growth simulating the tumor mass effect is performed with the aim of improving the registration accuracy in case of patients with space-occupying lesions. We perform tests on 2D axial slices of five different patient data sets and show that the approach gives good results for the segmentation of white matter, grey matter, cerebrospinal fluid and the tumor.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present an automatic method to segment brain tissues from volumetric MRI brain tumor images. The method is based on non-rigid registration of an average atlas in combination with a biomechanically justified tumor growth model to simulate soft-tissue deformations caused by the tumor mass-effect. The tumor growth model, which is formulated as a mesh-free Markov Random Field energy minimization problem, ensures correspondence between the atlas and the patient image, prior to the registration step. The method is non-parametric, simple and fast compared to other approaches while maintaining similar accuracy. It has been evaluated qualitatively and quantitatively with promising results on eight datasets comprising simulated images and real patient data.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many methodologies dealing with prediction or simulation of soft tissue deformations on medical image data require preprocessing of the data in order to produce a different shape representation that complies with standard methodologies, such as mass–spring networks, finite element method s (FEM). On the other hand, methodologies working directly on the image space normally do not take into account mechanical behavior of tissues and tend to lack physics foundations driving soft tissue deformations. This chapter presents a method to simulate soft tissue deformations based on coupled concepts from image analysis and mechanics theory. The proposed methodology is based on a robust stochastic approach that takes into account material properties retrieved directly from the image, concepts from continuum mechanics and FEM. The optimization framework is solved within a hierarchical Markov random field (HMRF) which is implemented on the graphics processor unit (GPU See Graphics processing unit ).