30 resultados para mapping system
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVE Intraarticular gadolinium-enhanced magnetic resonance arthrography (MRA) is commonly applied to characterize morphological disorders of the hip. However, the reproducibility of retrieving anatomic landmarks on MRA scans and their correlation with intraarticular pathologies is unknown. A precise mapping system for the exact localization of hip pathomorphologies with radial MRA sequences is lacking. Therefore, the purpose of the study was the establishment and validation of a reproducible mapping system for radial sequences of hip MRA. MATERIALS AND METHODS Sixty-nine consecutive intraarticular gadolinium-enhanced hip MRAs were evaluated. Radial sequencing consisted of 14 cuts orientated along the axis of the femoral neck. Three orthopedic surgeons read the radial sequences independently. Each MRI was read twice with a minimum interval of 7 days from the first reading. The intra- and inter-observer reliability of the mapping procedure was determined. RESULTS A clockwise system for hip MRA was established. The teardrop figure served to determine the 6 o'clock position of the acetabulum; the center of the greater trochanter served to determine the 12 o'clock position of the femoral head-neck junction. The intra- and inter-observer ICCs to retrieve the correct 6/12 o'clock positions were 0.906-0.996 and 0.978-0.988, respectively. CONCLUSIONS The established mapping system for radial sequences of hip joint MRA is reproducible and easy to perform.
Resumo:
OBJECTIVES This study prospectively evaluated the role of a novel 3-dimensional, noninvasive, beat-by-beat mapping system, Electrocardiographic Mapping (ECM), in facilitating the diagnosis of atrial tachycardias (AT). BACKGROUND Conventional 12-lead electrocardiogram, a widely used noninvasive tool in clinical arrhythmia practice, has diagnostic limitations. METHODS Various AT (de novo and post-atrial fibrillation ablation) were mapped using ECM followed by standard-of-care electrophysiological mapping and ablation in 52 patients. The ECM consisted of recording body surface electrograms from a 252-electrode-vest placed on the torso combined with computed tomography-scan-based biatrial anatomy (CardioInsight Inc., Cleveland, Ohio). We evaluated the feasibility of this system in defining the mechanism of AT-macro-re-entrant (perimitral, cavotricuspid isthmus-dependent, and roof-dependent circuits) versus centrifugal (focal-source) activation-and the location of arrhythmia in centrifugal AT. The accuracy of the noninvasive diagnosis and detection of ablation targets was evaluated vis-à-vis subsequent invasive mapping and successful ablation. RESULTS Comparison between ECM and electrophysiological diagnosis could be accomplished in 48 patients (48 AT) but was not possible in 4 patients where the AT mechanism changed to another AT (n = 1), atrial fibrillation (n = 1), or sinus rhythm (n = 2) during the electrophysiological procedure. ECM correctly diagnosed AT mechanisms in 44 of 48 (92%) AT: macro-re-entry in 23 of 27; and focal-onset with centrifugal activation in 21 of 21. The region of interest for focal AT perfectly matched in 21 of 21 (100%) AT. The 2:1 ventricular conduction and low-amplitude P waves challenged the diagnosis of 4 of 27 macro-re-entrant (perimitral) AT that can be overcome by injecting atrioventricular node blockers and signal averaging, respectively. CONCLUSIONS This prospective multicenter series shows a high success rate of ECM in accurately diagnosing the mechanism of AT and the location of focal arrhythmia. Intraprocedural use of the system and its application to atrial fibrillation mapping is under way.
Resumo:
The electroanatomic mapping system Carto((R)) with its combination of anatomic and electrophysiologic information has substantially improved our understanding of arrhythmia mechanisms and substrates in patients with ventricular tachycardia (VT) and structural heart disease. Identification of the individual arrhythmogenic substrate and successful ablation guided by the combination of sinus rhythm voltage mapping and conventional electrophysiologic techniques like pace and activation/entrainment mapping are best described for patients with recurrent VT in remote myocardial infarction. In about 75-90% of the patients, the target VT can be ablated with acute success and the patients remain free of any VT recurrence in up to 75%. First results of electroanatomically guided ablation in patients with arrhythmogenic right ventricular dysplasia are promising. Data on ablation of VT in other structural heart diseases are very limited, since the arrhythmogenic substrate is very diffuse, e. g., in dilated cardiomyopathy, or there are only small patient numbers, e. g., for cardiac sarcoidosis or monomorphic VT after repair of congenital heart disease. In this article, the current status of electroanatomically guided endocardial mapping and ablation of VT in patients with structural heart disease is described.
Resumo:
BACKGROUND Local abnormal ventricular activities (LAVA) in patients with scar-related ventricular tachycardia (VT) may appear at any time during or after the far-field electrogram. Although they may be separated from the far-field signal by an isoelectric line and extend beyond the end of surface QRS, they may also appear fused or buried within the QRS. OBJECTIVE The purpose of this study was to characterize LAVA in postinfarction VT patients with respect to their anatomic locations. METHODS Thirty-one patients with postinfarction VT underwent mapping/ablation during sinus rhythm with a three-dimensional electroanatomic mapping system. From a total of 18,270 electrograms reviewed in all study subjects, 1104 LAVA (endocardium 839, epicardium 265) were identified and analyzed. RESULTS The interval from onset of QRS complex to ventricular electrogram (EGM onset) on the endocardium was significantly shorter than the epicardium (P < .001). EGM onset was shortest in the septal endocardium and longest in the inferior and lateral epicardium. There was a significant positive correlation between EGM onset and LAVA lateness as estimated by the interval from surface QRS onset to LAVA (r = 0.52, P < .001). LAVA were more frequently detected after the QRS complex in the epicardium (241/265 [91%]) than in the endocardium (551/839 [66%], P < .001). Only 43% of endocardial septal LAVA were detected after the QRS complex. CONCLUSION Lateness of LAVA is affected to a large extent by their locations. The chance of detecting late LAVA increases when electrogram onset is later. Substrate-based approach targeting delayed signals relative to the QRS complex may miss critical the arrhythmogenic substrate, particularly in the septum and other early-to-activate regions.
Resumo:
UNLABELLED Topography of the esophagus in atrial fibrillation ablation. INTRODUCTION The close anatomic relationship of the posterior wall of the left atrium (LA) and the thermosensitive esophagus creates a potential hazard in catheter ablation procedures. METHODS AND RESULTS In 30 patients (pts) with atrial fibrillation (AF) undergoing catheter ablation, we prospectively studied the course and contact of the esophagus in relation to LA and the topographic proximity to ablation lines encircling the right-sided and left-sided pulmonary veins (PV) as well as to the posterior line connecting the encircling lines using the electromagnetic mapping system for reconstruction of LA and for tagging of the esophagus. This new technique of anatomic tagging of the esophagus was validated against the CT scan as a standard imaging procedure. The esophageal course was highly variable, extending from courses in direct vicinity to the left- or right-sided PV as well as in the midportion of the posterior LA. In order to avoid energy application in direct proximity to the esophagus, adjustments of the left and right PV encircling lines were necessary in 14/30 pts (47%) and 3/30 (10%). In 30 pts (100%), the mid- to inferior areas of the posterior LA revealed contact with the esophagus. Therefore, posterior and inferior linear ablation lines were abandoned and shifted to superior in 29 pts (97%). CONCLUSIONS Anatomic tagging of esophagus revealed a highly variable proximity to different areas of the posterior LA suggesting individual adjustment of encircling and linear ablation lines in AF ablation procedures to avoid the life threatening complication of esophagus perforation.
Resumo:
OBJECTIVES We sought to analyze the time course of atrial fibrillation (AF) episodes before and after circular plus linear left atrial ablation and the percentage of patients with complete freedom from AF after ablation by using serial seven-day electrocardiograms (ECGs). BACKGROUND The curative treatment of AF targets the pathophysiological corner stones of AF (i.e., the initiating triggers and/or the perpetuation of AF). The pathophysiological complexity of both may not result in an "all-or-nothing" response but may modify number and duration of AF episodes. METHODS In patients with highly symptomatic AF, circular plus linear ablation lesions were placed around the left and right pulmonary veins, between the two circles, and from the left circle to the mitral annulus using the electroanatomic mapping system. Repetitive continuous 7-day ECGs administered before and after catheter ablation were used for rhythm follow-up. RESULTS In 100 patients with paroxysmal (n = 80) and persistent (n = 20) AF, relative duration of time spent in AF significantly decreased over time (35 +/- 37% before ablation, 26 +/- 41% directly after ablation, and 10 +/- 22% after 12 months). Freedom from AF stepwise increased in patients with paroxysmal AF and after 12 months measured at 88% or 74% depending on whether 24-h ECG or 7-day ECG was used. Complete pulmonary vein isolation was demonstrated in <20% of the circular lesions. CONCLUSIONS The results obtained in patients with AF treated with circular plus linear left atrial lesions strongly indicate that substrate modification is the main underlying pathophysiologic mechanism and that it results in a delayed cure instead of an immediate cure.
Resumo:
OBJECTIVES This study was conducted to determine if an additional procedural endpoint of unexcitability (UE) to pacing along the ablation line reduces recurrence of atrial fibrillation (AF) or atrial tachycardia (AT) after radiofrequency catheter ablation. BACKGROUND AF/AT recurrence is common after pulmonary vein isolation (PVI). METHODS We included 102 patients from 2 centers (age 63 ± 10 years; 33 women; left atrium 38 ± 7 mm; left ventricular ejection fraction 61 ± 6%) with symptomatic paroxysmal AF. A 3-dimensional mapping system and circumferential mapping catheter were used in all patients for PVI. In group 1 (n = 50), the procedural endpoint was bidirectional block across the ablation line. In group 2 (n = 52), additional UE to bipolar pacing at an output of 10 mA and 2-ms pulse width was required. The primary endpoint was freedom from any AF/AT (>30 s) after discontinuation of antiarrhythmic drugs. RESULTS Procedural endpoints were successfully achieved in all patients. Procedure duration was significantly longer in group 2 (185 ± 58 min vs. 139 ± 57 min; p < 0.001); however, fluoroscopy times were not different (23 ± 9 min vs. 23 ± 9 min; p = 0.49). After a follow-up of 12 months in all patients, 26 patients (52%) in group 1 versus 43 (82.7%) in group 2 were free from any AF/AT (p = 0.001) after a single procedure. No major complications occurred. CONCLUSIONS The use of pacing to ensure UE along the PVI line markedly improved near-term single-procedure success, compared with demonstration of bidirectional block alone. This additional endpoint significantly improved patient outcomes after PVI. (Unexcitability Along the Ablation as an Endpoint for Atrial Fibrillation Ablation; NCT01724437).
Resumo:
INTRODUCTION Mitral isthmus (MI) ablation is an effective option in patients undergoing ablation for persistent atrial fibrillation (AF). Achieving bidirectional conduction block across the MI is challenging, and predictors of MI ablation success remain incompletely understood. We sought to determine the impact of anatomical location of the ablation line on the efficacy of MI ablation. METHODS AND RESULTS A total of 40 consecutive patients (87% male; 54 ± 10 years) undergoing stepwise AF ablation were included. MI ablation was performed in sinus rhythm. MI ablation was performed from the left inferior PV to either the posterior (group 1) or the anterolateral (group 2) mitral annulus depending on randomization. The length of the MI line (measured with the 3D mapping system) and the amplitude of the EGMs at 3 positions on the MI were measured in each patient. MI block was achieved in 14/19 (74%) patients in group 1 and 15/21 (71%) patients in group 2 (P = NS). Total MI radiofrequency time (18 ± 7 min vs. 17 ± 8 min; P = NS) was similar between groups. Patients with incomplete MI block had a longer MI length (34 ± 6 mm vs. 24 ± 5 mm; P < 0.001), a higher bipolar voltage along the MI (1.75 ± 0.74 mV vs. 1.05 ± 0.69 mV; P < 0.01), and a longer history of continuous AF (19 ± 17 months vs. 10 ± 10 months; P < 0.05). In multivariate analysis, decreased length of the MI was an independent predictor of successful MI block (OR 1.5; 95% CI 1.1-2.1; P < 0.05). CONCLUSIONS Increased length but not anatomical location of the MI predicts failure to achieve bidirectional MI block during ablation of persistent AF.
Resumo:
We analyzed more than 200 OSIRIS NAC images with a pixel scale of 0.9-2.4 m/pixel of comet 67P/Churyumov-Gerasimenko (67P) that have been acquired from onboard the Rosetta spacecraft in August and September 2014 using stereo-photogrammetric methods (SPG). We derived improved spacecraft position and pointing data for the OSIRIS images and a high-resolution shape model that consists of about 16 million facets (2 m horizontal sampling) and a typical vertical accuracy at the decimeter scale. From this model, we derive a volume for the northern hemisphere of 9.35 km(3) +/- 0.1 km(3). With the assumption of a homogeneous density distribution and taking into account the current uncertainty of the position of the comet's center-of-mass, we extrapolated this value to an overall volume of 18.7 km(3) +/- 1.2 km(3), and, with a current best estimate of 1.0 X 10(13) kg for the mass, we derive a bulk density of 535 kg/m(3) +/- 35 kg/m(3). Furthermore, we used SPG methods to analyze the rotational elements of 67P. The rotational period for August and September 2014 was determined to be 12.4041 +/- 0.0004 h. For the orientation of the rotational axis (z-axis of the body-fixed reference frame) we derived a precession model with a half-cone angle of 0.14 degrees, a cone center position at 69.54 degrees/64.11 degrees (RA/Dec J2000 equatorial coordinates), and a precession period of 10.7 days. For the definition of zero longitude (x-axis orientation), we finally selected the boulder-like Cheops feature on the big lobe of 67P and fixed its spherical coordinates to 142.35 degrees right-hand-rule eastern longitude and -0.28 degrees latitude. This completes the definition of the new Cheops reference frame for 67P. Finally, we defined cartographic mapping standards for common use and combined analyses of scientific results that have been obtained not only within the OSIRIS team, but also within other groups of the Rosetta mission.
Resumo:
There is a demand for technologies able to assess the perfusion of surgical flaps quantitatively and reliably to avoid ischemic complications. The aim of this study is to test a new high-speed high-definition laser Doppler imaging (LDI) system (FluxEXPLORER, Microvascular Imaging, Lausanne, Switzerland) in terms of preoperative mapping of the vascular supply (perforator vessels) and postoperative flow monitoring. The FluxEXPLORER performs perfusion mapping of an area 9 x 9 cm with a resolution of 256 x 256 pixels within 6 s in high-definition imaging mode. The sensitivity and predictability to localize perforators is expressed by the coincidence of preoperatively assessed LDI high flow spots with intraoperatively verified perforators in nine patients. 18 free flaps are monitored before, during, and after total ischemia. 63% of all verified perforators correspond to a high flow spot, and 38% of all high flow spots correspond to a verified perforator (positive predictive value). All perfused flaps reveal a value of above 221 perfusion units (PUs), and all values obtained in the ischemic flaps are beneath 187 PU. In summary, we conclude that the present LDI system can serve as a reliable, fast, and easy-to-handle tool to detect ischemia in free flaps, whereas perforator vessels cannot be detected appropriately.
Resumo:
Biotic and abiotic phenological observations can be collected from continental to local spatial scale. Plant phenological observations may only be recorded wherever there is vegetation. Fog, snow and ice are available as phenological para-meters wherever they appear. The singularity of phenological observations is the possibility of spatial intensification to a microclimatic scale where the equipment of meteorological measurements is too expensive for intensive campaigning. The omnipresence of region-specific phenological parameters allows monitoring for a spatially much more detailed assessment of climate change than with weather data. We demonstrate this concept with phenological observations with the use of a special network in the Canton of Berne, Switzerland, with up to 600 observations sites (more than 1 to 10 km² of the inhabited area). Classic cartography, gridding, the integration into a Geographic Information System GIS and large-scale analysis are the steps to a detailed knowledge of topoclimatic conditions of a mountainous area. Examples of urban phenology provide other types of spatially detailed applications. Large potential in phenological mapping in future analyses lies in combining traditionally observed species-specific phenology with remotely sensed and modelled phenology that provide strong spatial information. This is a long history from cartographic intuition to algorithm-based representations of phenology.
Resumo:
β-blockers and β-agonists are primarily used to treat cardiovascular diseases. Inter-individual variability in response to both drug classes is well recognized, yet the identity and relative contribution of the genetic players involved are poorly understood. This work is the first genome-wide association study (GWAS) addressing the values and susceptibility of cardiovascular-related traits to a selective β(1)-blocker, Atenolol (ate), and a β-agonist, Isoproterenol (iso). The phenotypic dataset consisted of 27 highly heritable traits, each measured across 22 inbred mouse strains and four pharmacological conditions. The genotypic panel comprised 79922 informative SNPs of the mouse HapMap resource. Associations were mapped by Efficient Mixed Model Association (EMMA), a method that corrects for the population structure and genetic relatedness of the various strains. A total of 205 separate genome-wide scans were analyzed. The most significant hits include three candidate loci related to cardiac and body weight, three loci for electrocardiographic (ECG) values, two loci for the susceptibility of atrial weight index to iso, four loci for the susceptibility of systolic blood pressure (SBP) to perturbations of the β-adrenergic system, and one locus for the responsiveness of QTc (p<10(-8)). An additional 60 loci were suggestive for one or the other of the 27 traits, while 46 others were suggestive for one or the other drug effects (p<10(-6)). Most hits tagged unexpected regions, yet at least two loci for the susceptibility of SBP to β-adrenergic drugs pointed at members of the hypothalamic-pituitary-thyroid axis. Loci for cardiac-related traits were preferentially enriched in genes expressed in the heart, while 23% of the testable loci were replicated with datasets of the Mouse Phenome Database (MPD). Altogether these data and validation tests indicate that the mapped loci are relevant to the traits and responses studied.
Resumo:
Auditory neuroscience has not tapped fMRI's full potential because of acoustic scanner noise emitted by the gradient switches of conventional echoplanar fMRI sequences. The scanner noise is pulsed, and auditory cortex is particularly sensitive to pulsed sounds. Current fMRI approaches to avoid stimulus-noise interactions are temporally inefficient. Since the sustained BOLD response to pulsed sounds decreases with repetition rate and becomes minimal with unpulsed sounds, we developed an fMRI sequence emitting continuous rather than pulsed gradient sound by implementing a novel quasi-continuous gradient switch pattern. Compared to conventional fMRI, continuous-sound fMRI reduced auditory cortex BOLD baseline and increased BOLD amplitude with graded sound stimuli, short sound events, and sounds as complex as orchestra music with preserved temporal resolution. Response in subcortical auditory nuclei was enhanced, but not the response to light in visual cortex. Finally, tonotopic mapping using continuous-sound fMRI demonstrates that enhanced functional signal-to-noise in BOLD response translates into improved spatial separability of specific sound representations.