19 resultados para mangrove fine root decomposition rates

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and aims Fine root decomposition contributes significantly to element cycling in terrestrial ecosystems. However, studies on root decomposition rates and on the factors that potentially influence them are fewer than those on leaf litter decomposition. To study the effects of region and land use intensity on fine root decomposition, we established a large scale study in three German regions with different climate regimes and soil properties. Methods In 150 forest and 150 grassland sites we deployed litterbags (100 μm mesh size) with standardized litter consisting of fine roots from European beech in forests and from a lowland mesophilous hay meadow in grasslands. In the central study region, we compared decomposition rates of this standardized litter with root litter collected on-site to separate the effect of litter quality from environmental factors. Results Standardized herbaceous roots in grassland soils decomposed on average significantly faster (24 ± 6 % mass loss after 12 months, mean ± SD) than beech roots in forest soils (12 ± 4 %; p < 0.001). Fine root decomposition varied among the three study regions. Land use intensity, in particular N addition, decreased fine root decomposition in grasslands. The initial lignin:N ratio explained 15 % of the variance in grasslands and 11 % in forests. Soil moisture, soil temperature, and C:N ratios of soils together explained 34 % of the variance of the fine root mass loss in grasslands, and 24 % in forests. Conclusions Grasslands, which have higher fine root biomass and root turnover compared to forests, also have higher rates of root decomposition. Our results further show that at the regional scale fine root decomposition is influenced by environmental variables such as soil moisture, soil temperature and soil nutrient content. Additional variation is explained by root litter quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on litter mass and litterfall data, decomposition rates for leaves were found to be fast (k = 3.3) and the turnover times short (3.6 mo) on the low-nutrient sandy soils of Korup. Leaf litter of four ectomycorrhizal tree species (Berlinia bracteosa, Didelotia africana, Microberlinia bisulcata and Tetraberlinia bifoliolata) and of three non-ectomycorrhizal species (Cola verticillata, Oubanguia alata and Strephonema pseudocola) from Korup were left to decompose in 2-mm mesh bags on the forest floor in three plots of each of two forest types forest of low (LEM) and high (HEM) abundance of ectomycorrhizal (caesalp) trees. The litter of the ectomycorrhizal species decayed at a significantly slower rate than that of the non-ectomycorrhizal species, although the former were richer in P and N concentrations of the start. Disappearance rates of the litter layer showed a similar trend. Ectomycorrhizal species immobilized less N, but mineralized more P, than non-ectomycorrhizal species. Differences between species groups in K, Mg and Ca mineralization were negligible. Effect of forest type was clear only for Mg: mineralization of Mg was faster in the HEM than LEM plots, a pattern repeated across all species. This difference was attributed to a much more prolific fine root mat in the HEM than LEM forest. The relatively fast release of P from the litter of the ectomycorrhizal species suggests that the mat must allow an efficient uptake to maintain P in the forest ecosystem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fine roots are the most dynamic portion of a plant's root system and a major source of soil organic matter. By altering plant species diversity and composition, soil conditions and nutrient availability, and consequently belowground allocation and dynamics of root carbon (C) inputs, land-use and management changes may influence organic C storage in terrestrial ecosystems. In three German regions, we measured fine root radiocarbon (14C) content to estimate the mean time since C in root tissues was fixed from the atmosphere in 54 grassland and forest plots with different management and soil conditions. Although root biomass was on average greater in grasslands 5.1 ± 0.8 g (mean ± SE, n = 27) than in forests 3.1 ± 0.5 g (n = 27) (p < 0.05), the mean age of C in fine roots in forests averaged 11.3 ± 1.8 yr and was older and more variable compared to grasslands 1.7 ± 0.4 yr (p < 0.001). We further found that management affects the mean age of fine root C in temperate grasslands mediated by changes in plant species diversity and composition. Fine root mean C age is positively correlated with plant diversity (r = 0.65) and with the number of perennial species (r = 0.77). Fine root mean C age in grasslands was also affected by study region with averages of 0.7 ± 0.1 yr (n = 9) on mostly organic soils in northern Germany and of 1.8 ± 0.3 yr (n = 9) and 2.6 ± 0.3 (n = 9) in central and southern Germany (p < 0.05). This was probably due to differences in soil nutrient contents and soil moisture conditions between study regions, which affected plant species diversity and the presence of perennial species. Our results indicate more long-lived roots or internal redistribution of C in perennial species and suggest linkages between fine root C age and management in grasslands. These findings improve our ability to predict and model belowground C fluxes across broader spatial scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The tropical montane forests of the E Andean cordillera in Ecuador receive episodic Sahara-dust inputs particularly increasing Ca deposition. We added CaCl2 to isolate the effect of Ca deposition by Sahara dust to tropical montane forest from the simultaneously occurring pH effect. We examined components of the Ca cycle at four control plots and four plots with added Ca (2 × 5 kg ha–1 Ca annually as CaCl2) in a random arrangement. Between August 2007 and December 2009 (four applications of Ca), we determined Ca concentrations and fluxes in litter leachate, mineral soil solution (0.15 and 0.30 m depths), throughfall, and fine litterfall and Al concentrations and speciation in soil solutions. After 1 y of Ca addition, we assessed fine-root biomass, leaf area, and tree growth. Only < 3% of the applied Ca leached below the acid organic layer (pH 3.5–4.8). The added CaCl2 did not change electrical conductivity in the root zone after 2 y. In the second year of fertilization, Ca retention in the canopy of the Ca treatment tended to decrease relative to the control. After 2 y, 21% of the applied Ca was recycled to soil with throughfall and litterfall. One year after the first Ca addition, fine-root biomass had decreased significantly. Decreasing fine-root biomass might be attributed to a direct or an indirect beneficial effect of Ca on the soil decomposer community. Because of almost complete association of Al with dissolved organic matter and high free Ca2+ : Al3+ activity ratios in solution of all plots, Al toxicity was unlikely. We conclude that the added Ca was retained in the system and had beneficial effects on some plants.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: The aim of apical surgery is to hermetically seal the root canal system after root-end resection, thereby enabling periradicular healing. The objective of this nonrandomized prospective clinical study was to report results of 2 different root-end preparation and filling methods, ie, mineral trioxide aggregate (MTA) and an adhesive resin composite (Retroplast). METHODS: The study included 353 consecutive cases with endodontic lesions limited to the periapical area. Root-end cavities were prepared with sonic microtips and filled with MTA (n = 178), or alternatively, a shallow concavity was prepared in the cut root face, with subsequent placement of an adhesive resin composite (Retroplast) (n = 175). Patients were recalled after 1 year. Cases were defined as healed when no clinical signs or symptoms were present and radiographs demonstrated complete or incomplete (scar tissue) healing of previous radiolucencies. RESULTS: The overall rate of healed cases was 85.5%. MTA-treated teeth demonstrated a significantly (P = .003) higher rate of healed cases (91.3%) compared with Retroplast-treated teeth (79.5%). Within the MTA group, 89.5%-100% of cases were classified as healed, depending on the type of treated tooth. In contrast, more variable rates ranging from 66.7%-100% were found in the Retroplast group. In particular, mandibular premolars and molars demonstrated considerably lower rates of healed cases when treated with Retroplast. CONCLUSIONS: MTA can be recommended for root-end filling in apical surgery, irrespective of the type of treated tooth. Retroplast should be used with caution for root-end sealing in apical surgery of mandibular premolars and molars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Apical surgery has seen continuous development with regard to equipment and surgical technique. However, there is still a shortage of evidence-based information regarding healing determinants. The objective of this meta-analysis was to review clinical articles on apical surgery with root-end filling in order to assess potential prognostic factors. METHODS: An electronic search of PubMed and Cochrane databases was performed in 2008. Only studies with clearly defined healing criteria were included, and data for at least two categories per prognostic factor had to be reported. Prognostic factors were divided into patient-related, tooth-related, or treatment-related factors. The reported percentages of healed teeth ("the healed rate") were pooled per category. The statistical method of Mantel-Haenszel was applied to estimate the odds ratios and their 95% confidence intervals. RESULTS: With regard to tooth-related factors, the following categories were significantly associated with higher healed rates: cases without preoperative pain or signs, cases with good density of root canal filling, and cases with absence or size < or = 5 mm of periapical lesion. With regard to treatment-related factors, cases treated with the use of an endoscope tended to have higher healed rates than cases without the use of an endoscope. CONCLUSIONS: Although the clinician may be able to control treatment-related factors (by choosing a certain technique), patient- and tooth-related factors are usually beyond the surgeon's power. Nevertheless, patient- and tooth-related factors should be considered as important prognostic determinants when planning or weighing apical surgery against treatment alternatives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIM: To assess survival rates and complications of root-filled teeth restored with or without post-and-core systems over a mean observation period of >or=4 years. METHODOLOGY: A total of 325 single- and multirooted teeth in 183 subjects treated in a private practice were root filled and restored with either a cast post-and-core or with a prefabricated titanium post and composite core. Root-filled teeth without post-retained restorations served as controls. The restored teeth served as abutments for single unit metal-ceramic or composite crowns or fixed bridges. Teeth supporting cantilever bridges, overdentures or telescopic crowns were excluded. RESULTS: Seventeen teeth in 17 subjects were lost to follow-up (17/325: 5.2%). The mean observation period was 5.2 +/- 1.8 (SD) years for restorations with titanium posts, 6.2 +/- 2.0 (SD) years for cast post-and-cores and 4.4 +/- 1.7 (SD) years for teeth without posts. Overall, 54% of build-ups included the incorporation of a titanium post and 26.5% the cementation of a cast post-and-core. The remaining 19.5% of the teeth were restored without intraradicular retention. The adjusted 5-year tooth survival rate amounted to 92.5% for teeth restored with titanium posts, to 97.1% for teeth restored with cast post-and-cores and to 94.3% for teeth without post restorations, respectively. The most frequent complications included root fracture (6.2%), recurrent caries (1.9%), post-treatment periradicular disease (1.6%) and loss of retention (1.3%). CONCLUSION: Provided that high-quality root canal treatment and restorative protocols are implemented, high survival and low complication rates of single- and multirooted root-filled teeth used as abutments for fixed restorations can be expected after a mean observation period of >or=4 years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Palaeoflood hydrology is an expanding field as the damage potential of flood and flood-related processes are increasing with the population density and the value of the infrastructure. Assessing the risk of these hazards in mountainous terrain requires knowledge about the frequency and severness of such events in the past. A wide range of methods is employed using diverse biologic, geomorphic or geologic evidences to track past flood events. Impact of floods are studied and dated on alluvial fans and cones using for example the growth disturbance of trees (Stoffel and Bollschweiler 2008; Schneuwly-Bollschweiler and Stoffel 2012: this volume) or stratigraphic layers deposited by debris flows, allowing to reconstruct past flood frequencies (Bardou et~al. 2003). Further downstream, the classical approach of palaeoflood hydrology (Kochel and Baker 1982) utilizes geomorphic indicators such as overbank sediments, silt lines and erosion features of floods along a river (e.g. Benito and Thorndycraft 2005). Fine-grained sediment settles out of the river suspension in eddies or backwater areas, where the flow velocity of the river is reduced. Records of these deposits at different elevations across a river’s profile can be used to assess the discharge of the past floods. This approach of palaeoflood hydrology studies was successfully applied in several river catchments (e.g. Ely et al. 1993; Macklin and Lewin 2003; O’Connor et al. 1994; Sheffer et al. 2003; Thorndycraft et al. 2005; Thorndycraft and Benito 2006). All these different reconstruction methods have their own advantages and disadvantages, but often these studies have a limited time coverage and the records are potentially incomplete due to lateral limits of depositional areas and due to the erosional power of fluvial processes that remove previously deposited flood witnesses. Here, we present a method that follows the sediment particle transported by a flood event to its final sink: the lacustrine basin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION Recent meta-analyses of the outcome of apical surgery using modern techniques including microsurgical principles and high-power magnification have yielded higher rates of healing. However, the information is mainly based on 1- to 2-year follow-up data. The present prospective study was designed to re-examine a large sample of teeth treated with apical surgery after 5 years. METHODS Patients were recalled 5 years after apical surgery, and treated teeth were classified as healed or not healed based on clinical and radiographic examination. (The latter was performed independently by 3 observers). Two different methods of root-end preparation and filling (primary study parameters) were to be compared (mineral trioxide aggregate [MTA] vs adhesive resin composite [COMP]) without randomization. RESULTS A total of 271 patients and teeth from a 1-year follow-up sample of 339 could be re-examined after 5 years (dropout rate = 20.1%). The overall rate of healed cases was 84.5% with a significant difference (P = .0003) when comparing MTA (92.5%) and COMP (76.6%). The evaluation of secondary study parameters yielded no significant difference for healing outcome when comparing subcategories (ie, sex, age, type of tooth treated, post/screw, type of surgery). CONCLUSIONS The results from this prospective nonrandomized clinical study with a 5-year follow-up of 271 teeth indicate that MTA exhibited a higher healing rate than COMP in the longitudinal prognosis of root-end sealing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES To report the mid-term results of aortic root replacement using a self-assembled biological composite graft, consisting of a vascular tube graft and a stented tissue valve. METHODS Between January 2005 and December 2011, 201 consecutive patients [median age 66 (interquartile range, IQR, 55-77) years, 31 female patients (15.4%), median logistic EuroSCORE 10 (IQR 6.8-23.2)] underwent aortic root replacement using a stented tissue valve for the following indications: annulo-aortic ectasia or ascending aortic aneurysm with aortic valve disease in 162 (76.8%) patients, active infective endocarditis in 18 (9.0%) and acute aortic dissection Stanford type A in 21 (10.4%). All patients underwent clinical and echocardiographic follow-up. We analysed survival and valve-related events. RESULTS The overall in-hospital mortality rate was 4.5%. One- and 5-year cardiac-related mortality rates were 3 and 6%, and overall survival was 95 ± 1.5 and 75 ± 3.6%, respectively. The rate of freedom from structural valve failure was 99% and 97 ± 0.4% at the 1- and 5-year follow-up, respectively. The incidence rates of prosthetic valve endocarditis were 3 and 4%, respectively. During a median follow-up of 28 (IQR 14-51) months, only 2 (1%) patients required valve-related redo surgery due to prosthetic valvular endocarditis and none suffered from thromboembolic events. One percent of patients showed structural valve deterioration without any clinical symptoms; none of the patients suffered greater than mild aortic regurgitation. CONCLUSIONS Aortic root replacement using a self-assembled biological composite graft is an interesting option. Haemodynamic results are excellent, with freedom from structured valve failure. Need for reoperation is extremely low, but long-term results are necessary to prove the durability of this concept.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES Valve-sparing root replacement (VSRR) is thought to reduce the rate of thromboembolic and bleeding events compared with aortic root replacement using a mechanical aortic root replacement (MRR) with a composite graft by avoiding oral anticoagulation. But as VSRR carries a certain risk for subsequent reinterventions, decision-making in the individual patient can be challenging. METHODS Of 100 Marfan syndrome (MFS) patients who underwent 169 aortic surgeries and were followed at our institution since 1995, 59 consecutive patients without a history of dissection or prior aortic surgery underwent elective VSRR or MRR and were retrospectively analysed. RESULTS VSRR was performed in 29 (David n = 24, Yacoub n = 5) and MRR in 30 patients. The mean age was 33 ± 15 years. The mean follow-up after VSRR was 6.5 ± 4 years (180 patient-years) compared with 8.8 ± 9 years (274 patient-years) after MRR. Reoperation rates after root remodelling (Yacoub) were significantly higher than after the reimplantation (David) procedure (60 vs 4.2%, P = 0.01). The need for reinterventions after the reimplantation procedure (0.8% per patient-year) was not significantly higher than after MRR (P = 0.44) but follow-up after VSRR was significantly shorter (P = 0.03). There was neither significant morbidity nor mortality associated with root reoperations. There were no neurological events after VSRR compared with four stroke/intracranial bleeding events in the MRR group (log-rank, P = 0.11), translating into an event rate of 1.46% per patient-year following MRR. CONCLUSION The calculated annual failure rate after VSRR using the reimplantation technique was lower than the annual risk for thromboembolic or bleeding events. Since the perioperative risk of reinterventions following VSRR is low, patients might benefit from VSRR even if redo surgery may become necessary during follow-up.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many insect herbivores feed on belowground plant tissues. In this chapter, we discuss how they have adapted to deal with root primary and secondary metabolites. It is becoming evident that root herbivores can use root volatiles and exudates for host location and foraging. Their complex sensory apparatus suggests a sophisticated recognition and signal transduction system. Furthermore, endogenous metabolites trigger attractive or repellent responses in root feeders, indicating that they may specifically fine-tune food uptake to meet their dietary needs. Little evidence for direct toxic effects of root secondary metabolites has accumulated so far, indicating high prevalence of tolerance mechanisms. Root herbivores furthermore facilitate the entry of soil microbes into the roots, which may influence root nutritional quality. Investigating the role of plant metabolites in an ecologically and physiologically relevant context will be crucial to refine our current models on root-herbivore physiology and behaviour in the future.