4 resultados para maltose
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
To allow classification of bacteria previously reported as the SP group and the Stewart-Letscher group, 35 isolates from rodents (21), rabbits (eight), a dog and humans (five) were phenotypically and genotypically characterized. Comparison of partial rpoB sequences showed that 34 of the isolates were closely related, demonstrating at least 97.4 % similarity. 16S rRNA gene sequence comparison of 20 selected isolates confirmed the monophyly of the SP group and revealed 98.5 %-100 % similarity between isolates. A blast search using the 16S rRNA gene sequences showed that the highest similarity outside the SP group was 95.5 % to an unclassified rat isolate. The single strain, P625, representing the Stewart-Letscher group showed the highest 16S rRNA gene similarity (94.9-95.5 %) to members of the SP group. recN gene sequence analysis of 11 representative strains resulted in similarities of 97-100 % among the SP group strains, which showed 80 % sequence similarity to the Stewart-Letscher group strain. Sequence similarity values based on the recN gene, indicative for whole genome similarity, showed the SP group being clearly separated from established genera, whereas the Stewart-Letscher group strain was associated with the SP group. A new genus, Necropsobacter gen. nov., with only one species, Necropsobacter rosorum sp. nov., is proposed to include all members of the SP group. The new genus can be separated from existing genera of the family Pasteurellaceae by at least three phenotypic characters. The most characteristic properties of the new genus are that haemolysis is not observed on bovine blood agar, positive reactions are observed in the porphyrin test, acid is produced from (+)-L-arabinose, (+)-D-xylose, dulcitol, (+)-D-galactose, (+)-D-mannose, maltose and melibiose, and negative reactions are observed for symbiotic growth, urease, ornithine decarboxylase and indole. Previous publications have documented that both ubiquinones and demethylmenaquinone were produced by the proposed type strain of the new genus, Michel A/76(T), and that the major polyamine of representative strains (type strain not included) of the genus is 1,3-diaminopropane, spermidine is present in moderate amounts and putrescine and spermine are detectable only in minor amounts. The major fatty acids of strain Michel A/76(T) are C(14 : 0), C(16 : 0), C(16:1)omega7c and summed feature C(14 : 0) 3-OH/iso-C(16 : 1) I. This fatty acid profile is typical for members of the family Pasteurellaceae. The G+C content of DNA of strain Michel A/76(T) was estimated to be 52.5 mol% in a previous investigation. The type strain is P709(T) ( = Michel A/76(T) = CCUG 28028(T) = CIP 110147(T) = CCM 7802(T)).
Resumo:
The detailed mechanistic aspects for the final starch digestion process leading to effective alpha-glucogenesis by the 2 mucosal alpha-glucosidases, human sucrase-isomaltase complex (SI) and human maltase-glucoamylase (MGAM), are poorly understood. This is due to the structural complexity and vast variety of starches and their intermediate digestion products, the poorly understood enzyme-substrate interactions occurring during the digestive process, and the limited knowledge of the structure-function properties of SI and MGAM. Here we analyzed the basic catalytic properties of the N-terminal subunit of MGAM (ntMGAM) on the hydrolysis of glucan substrates and compared it with those of human native MGAM isolated by immunochemical methods. In relation to native MGAM, ntMGAM displayed slower activity against maltose to maltopentose (G5) series glucose oligomers, as well as maltodextrins and alpha-limit dextrins, and failed to show the strong substrate inhibitory "brake" effect caused by maltotriose, maltotetrose, and G5 on the native enzyme. In addition, the inhibitory constant for acarbose was 2 orders of magnitude higher for ntMGAM than for native MGAM, suggesting lower affinity and/or fewer binding configurations of the active site in the recombinant enzyme. The results strongly suggested that the C-terminal subunit of MGAM has a greater catalytic efficiency due to a higher affinity for glucan substrates and larger number of binding configurations to its active site. Our results show for the first time, to our knowledge, that the C-terminal subunit of MGAM is responsible for the MGAM peptide's "glucoamylase" activity and is the location of the substrate inhibitory brake. In contrast, the membrane-bound ntMGAM subunit contains the poorly inhibitable "maltase" activity of the internally duplicated enzyme.
Resumo:
Human maltase-glucoamylase (MGAM) is one of the two enzymes responsible for catalyzing the last glucose-releasing step in starch digestion. MGAM is anchored to the small-intestinal brush-border epithelial cells and contains two homologous glycosyl hydrolase family 31 catalytic subunits: an N-terminal subunit (NtMGAM) found near the membrane-bound end and a C-terminal luminal subunit (CtMGAM). In this study, we report the crystal structure of the human NtMGAM subunit in its apo form (to 2.0 A) and in complex with acarbose (to 1.9 A). Structural analysis of the NtMGAM-acarbose complex reveals that acarbose is bound to the NtMGAM active site primarily through side-chain interactions with its acarvosine unit, and almost no interactions are made with its glycone rings. These observations, along with results from kinetic studies, suggest that the NtMGAM active site contains two primary sugar subsites and that NtMGAM and CtMGAM differ in their substrate specificities despite their structural relationship. Additional sequence analysis of the CtMGAM subunit suggests several features that could explain the higher affinity of the CtMGAM subunit for longer maltose oligosaccharides. The results provide a structural basis for the complementary roles of these glycosyl hydrolase family 31 subunits in the bioprocessing of complex starch structures into glucose.
Resumo:
Human heteromeric amino acid transporters (HATs) are membrane protein complexes that facilitate the transport of specific amino acids across cell membranes. Loss of function or overexpression of these transporters is implicated in several human diseases such as renal aminoacidurias and cancer. HATs are composed of two subunits, a heavy and a light subunit, that are covalently connected by a disulphide bridge. Light subunits catalyse amino acid transport and consist of twelve transmembrane α-helix domains. Heavy subunits are type II membrane N-glycoproteins with a large extracellular domain and are involved in the trafficking of the complex to the plasma membrane. Structural information on HATs is scarce because of the difficulty in heterologous overexpression. Recently, we had a major breakthrough with the overexpression of a recombinant HAT, 4F2hc-LAT2, in the methylotrophic yeast Pichia pastoris. Microgram amounts of purified protein made possible the reconstruction of the first 3D map of a human HAT by negative-stain transmission electron microscopy. Here we report the important stabilization of purified human 4F2hc-LAT2 using a combination of two detergents, i.e., n-dodecyl-β-D-maltopyranoside and lauryl maltose neopentyl glycol, and cholesteryl hemisuccinate. The superior quality and stability of purified 4F2hc-LAT2 allowed the measurement of substrate binding by scintillation proximity assay. In addition, an improved 3D map of this HAT could be obtained. The detergent-induced stabilization of the purified human 4F2hc-LAT2 complex presented here paves the way towards its crystallization and structure determination at high-resolution, and thus the elucidation of the working mechanism of this important protein complex at the molecular level.