3 resultados para macrocyclization
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
An efficient new synthesis has been elaborated for non-natural (-)-dactylolide ((-)-2) and its 13-desmethylene analogue 4, employing a HWE-based macrocyclization approach with beta-keto-phosphonate/aldehyde 19 and the respective 13-desmethylene derivative as the key intermediates. Both (-)-2 and 4 as well as the corresponding C20 alcohols inhibit human cancer cell proliferation with IC(50) values in the sub-micromolar range and induce the polymerization of tubulin in vitro.
Resumo:
The stereoselective synthesis of the monocyclic peloruside A analogue 4 has been achieved, following a new efficient approach for the introduction of the side chain, involving a late-stage addition of vinyl lithium species 7a to aldehyde 8. Further key steps are a highly diastereoselective allyltitanation reaction and a RCM-based macrocyclization.
Resumo:
The stereoselective syntheses of 7,8,9-trideoxypeloruside A (4) and a monocyclic peloruside A analogue lacking the entire tetrahydropyran moiety (3) are described. The syntheses proceeded through the PMB-ether of an ω-hydroxy β-keto aldehyde as a common intermediate which was elaborated into a pair of diastereomeric 1,3-syn and -anti diols by stereoselective Duthaler–Hafner allylations and subsequent 1,3-syn or anti reduction. One of these isomers was further converted into a tetrahydropyran derivative in a high-yielding Prins reaction, to provide the precursor for bicyclic analogue 4. Downstream steps for both syntheses included the substrate-controlled addition of a vinyl lithium intermediate to an aldehyde, thus connecting the peloruside side chain to C15 (C13) of the macrocyclic core structure in a fully stereoselective fashion. In the case of monocyclic 3 macrocyclization was based on ring-closing olefin metathesis (RCM), while bicyclic 4 was cyclized through Yamaguchi-type macrolactonization. The macrolactonization step was surprisingly difficult and was accompanied by extensive cyclic dimer formation. Peloruside A analogues 3 and 4 inhibited the proliferation of human cancer cell lines in vitro with micromolar and sub-micromolar IC50 values, respectively. The higher potency of 4 highlights the importance of the bicyclic core structure of peloruside A for nM biological activity.