31 resultados para long-range correlation
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND: Control of breathing, heart rate, and body temperature are interdependent in infants, where instabilities in thermoregulation can contribute to apneas or even life-threatening events. Identifying abnormalities in thermoregulation is particularly important in the first 6 months of life, where autonomic regulation undergoes critical development. Fluctuations in body temperature have been shown to be sensitive to maturational stage as well as system failure in critically ill patients. We thus aimed to investigate the existence of fractal-like long-range correlations, indicative of temperature control, in night time rectal temperature (T(rec)) patterns in maturing infants. METHODOLOGY/PRINCIPAL FINDINGS: We measured T(rec) fluctuations in infants every 4 weeks from 4 to 20 weeks of age and before and after immunization. Long-range correlations in the temperature series were quantified by the correlation exponent, alpha using detrended fluctuation analysis. The effects of maturation, room temperature, and immunization on the strength of correlation were investigated. We found that T(rec) fluctuations exhibit fractal long-range correlations with a mean (SD) alpha of 1.51 (0.11), indicating that T(rec) is regulated in a highly correlated and hence deterministic manner. A significant increase in alpha with age from 1.42 (0.07) at 4 weeks to 1.58 (0.04) at 20 weeks reflects a change in long-range correlation behavior with maturation towards a smoother and more deterministic temperature regulation, potentially due to the decrease in surface area to body weight ratio in the maturing infant. alpha was not associated with mean room temperature or influenced by immunization CONCLUSIONS: This study shows that the quantification of long-range correlations using alpha derived from detrended fluctuation analysis is an observer-independent tool which can distinguish developmental stages of night time T(rec) pattern in young infants, reflective of maturation of the autonomic system. Detrended fluctuation analysis may prove useful for characterizing thermoregulation in premature and other infants at risk for life-threatening events.
Resumo:
Two-particle correlations in relative azimuthal angle (Delta phi) and pseudorapidity (Delta eta) are measured in root S-NN = 5.02 TeV p + Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1 mu b(-1) of data as a function of transverse momentum (p(T)) and the transverse energy (Sigma E-T(Pb)) summed over 3.1 < eta < 4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2 < vertical bar Delta eta vertical bar < 5) "near-side" (Delta phi similar to 0) correlation that grows rapidly with increasing Sigma E-T(Pb). A long-range "away-side" (Delta phi similar to pi) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small Sigma E-T(Pb), is found to match the near-side correlation in magnitude, shape (in Delta eta and Delta phi) and Sigma E-T(Pb) dependence. The resultant Delta phi correlation is approximately symmetric about pi/2, and is consistent with a dominant cos2 Delta phi modulation for all Sigma E-T(Pb) ranges and particle p(T).
Resumo:
Measurements of two-particle correlation functions and the first five azimuthal harmonics, v 1 to v 5 , are presented, using 28 nb −1 of p+Pb collisions at a nucleon-nucleon center-of-mass energy of √s NN=5.02 TeV measured with the ATLAS detector at the LHC. Significant long-range “ridgelike” correlations are observed for pairs with small relative azimuthal angle (|Δϕ|<π/3 ) and back-to-back pairs (|Δϕ|>2π/3 ) over the transverse momentum range 0.4
long-range correlations is Fourier decomposed to obtain the harmonics v n as a function of p T and event activity. The extracted v n values for n=2 to 5 decrease with n . The v 2 and v 3 values are found to be positive in the measured p T range. The v 1 is also measured as a function of p T and is observed to change sign around p T ≈1.5 –2.0 GeV and then increase to about 0.1 for p T >4 GeV. The v 2 (p T ) , v 3 (p T ) , and v 4 (p T ) are compared to the v n coefficients in Pb+Pb collisions at √s NN=2.76 TeV with similar event multiplicities. Reasonable agreement is observed after accounting for the difference in the average p T of particles produced in the two collision systems.
Resumo:
Brain activity relies on transient, fluctuating interactions between segregated neuronal populations. Synchronization within a single and between distributed neuronal clusters reflects the dynamics of these cooperative patterns. Thus absence epilepsy can be used as a model for integrated, large-scale investigation of the emergence of pathological collective dynamics in the brain. Indeed, spike-wave discharges (SWD) of an absence seizure are thought to reflect abnormal cortical hypersynchronization. In this paper, we address two questions: how and where do SWD arise in the human brain? Therefore, we explored the spatio-temporal dynamics of interactions within and between widely distributed cortical sites using magneto-encephalographic recordings of spontaneous absence seizures. We then extracted, from their time-frequency analysis, local synchronization of cortical sources and long-range synchronization linking distant sites. Our analyses revealed a reproducible sequence of 1) long-range desynchronization, 2) increased local synchronization and 3) increased long-range synchronization. Although both local and long-range synchronization displayed different spatio-temporal profiles, their cortical projection within an initiation time window overlap and reveal a multifocal fronto-central network. These observations contradict the classical view of sudden generalized synchronous activities in absence epilepsy. Furthermore, they suggest that brain states transition may rely on multi-scale processes involving both local and distant interactions.
Resumo:
The intensity of long-range correlations observed with the classical HMBC pulse sequence using static optimization of the long-range coupling delay is directly related to the size of the coupling constant and is often set as a compromise. As such, some long-range correlations might appear with a reduced intensity or might even be completely absent from the spectra. After a short introduction, this third manuscript will give a detailed review of some selected HMBC variants dedicated to improve the detection of long-range correlations, such as the ACCORD-HMBC, CIGAR-HMBC, and Broadband HMBC experiments. Practical details about the accordion optimization, which affords a substantial improvement in both the number and intensity of the long-range correlations observed, but introduces a modulation in F1, will be discussed. The incorporation of the so-called constant time variable delay in the CIGAR-HMBC experiment, which can trigger or even completely suppress 1H–1H coupling modulation inherent to the utilization of the accordion principle, will be also discussed. The broadband HMBC scheme, which consists of recording a series of HMBC spectra with different delays set as a function of the long-range heteronuclear coupling constant ranges and transverse relaxation times T2, is also examined.
Resumo:
Phase locking or synchronization of brain areas is a key concept of information processing in the brain. Synchronous oscillations have been observed and investigated extensively in EEG during the past decades. EEG oscillations occur over a wide frequency range. In EEG, a prominent type of oscillations is alpha-band activity, present typically when a subject is awake, but at rest with closed eyes. The spectral power of alpha rhythms has recently been investigated in simultaneous EEG/fMRI recordings, establishing a wide-range cortico-thalamic network. However, spectral power and synchronization are different measures and little is known about the correlations between BOLD effects and EEG synchronization. Interestingly, the fMRI BOLD signal also displays synchronous oscillations across different brain regions. These oscillations delineate so-called resting state networks (RSNs) that resemble the correlation patterns of simultaneous EEG/fMRI recordings. However, the nature of these BOLD oscillations and their relations to EEG activity is still poorly understood. One hypothesis is that the subunits constituting a specific RSN may be coordinated by different EEG rhythms. In this study we report on evidence for this hypothesis. The BOLD correlates of global EEG synchronization (GFS) in the alpha frequency band are located in brain areas involved in specific RSNs, e.g. the 'default mode network'. Furthermore, our results confirm the hypothesis that specific RSNs are organized by long-range synchronization at least in the alpha frequency band. Finally, we could localize specific areas where the GFS BOLD correlates and the associated RSN overlap. Thus, we claim that not only the spectral dynamics of EEG are important, but also their spatio-temporal organization.
Resumo:
In order to study further the long-range correlations ("ridge") observed recently in p+Pb collisions at sqrt(s_NN) =5.02 TeV, the second-order azimuthal anisotropy parameter of charged particles, v_2, has been measured with the cumulant method using the ATLAS detector at the LHC. In a data sample corresponding to an integrated luminosity of approximately 1 microb^(-1), the parameter v_2 has been obtained using two- and four-particle cumulants over the pseudorapidity range |eta|<2.5. The results are presented as a function of transverse momentum and the event activity, defined in terms of the transverse energy summed over 3.1
Resumo:
The utility of the HMBC experiment for structure elucidation is unquestionable, but the nature of the coupling pathways leading to correlations in an HMBC experiment creates the potential for misinterpretation. This misinterpretation potential is intimately linked to the size of the long-range heteronuclear couplings involved, and may become troublesome in those cases of a particularly strong 2JCH correlation that might be mistaken for a 3JCH correlation or a 4JCH correlation of appreciable strength that could be mistaken for a weaker 3JCH correlation. To address these potential avenues of confusion, work from several laboratories has been focused on the development of what might be considered “coupling pathway edited” long-range heteronuclear correlation experiments that are derived from or related to the HMBC experiment. The first example of an effort to address the problems associated with correlation path length was seen in the heteronucleus-detected XCORFE experiment described by Reynolds and co-workers that predated the development of the HMBC experiment. Proton-detected analogs of the HMBC experiment intended to differentiate 2JCH correlations from nJCH correlations where n = 3, 4, include the 2J,3J-HMBC, HMBC-RELAY, H2BC, edited-HMBC, and HAT H2BC experiments. The principles underlying the critical components of each of these experiments are discussed and experimental verification of the results that can be obtained using model compounds are shown. This contribution concludes with a brief discussion of the 1,1-ADEQUATE experiments that provide an alternative means of identifying adjacent protonated and non-protonated carbon correlations by exploiting 1JCC correlations at natural abundance.
Resumo:
Asthma is an increasing health problem worldwide, but the long-term temporal pattern of clinical symptoms is not understood and predicting asthma episodes is not generally possible. We analyse the time series of peak expiratory flows, a standard measurement of airway function that has been assessed twice daily in a large asthmatic population during a long-term crossover clinical trial. Here we introduce an approach to predict the risk of worsening airflow obstruction by calculating the conditional probability that, given the current airway condition, a severe obstruction will occur within 30 days. We find that, compared with a placebo, a regular long-acting bronchodilator (salmeterol) that is widely used to improve asthma control decreases the risk of airway obstruction. Unexpectedly, however, a regular short-acting beta2-agonist bronchodilator (albuterol) increases this risk. Furthermore, we find that the time series of peak expiratory flows show long-range correlations that change significantly with disease severity, approaching a random process with increased variability in the most severe cases. Using a nonlinear stochastic model, we show that both the increased variability and the loss of correlations augment the risk of unstable airway function. The characterization of fluctuations in airway function provides a quantitative basis for objective risk prediction of asthma episodes and for evaluating the effectiveness of therapy.
Resumo:
We report a high-quality draft sequence of the genome of the horse (Equus caballus). The genome is relatively repetitive but has little segmental duplication. Chromosomes appear to have undergone few historical rearrangements: 53% of equine chromosomes show conserved synteny to a single human chromosome. Equine chromosome 11 is shown to have an evolutionary new centromere devoid of centromeric satellite DNA, suggesting that centromeric function may arise before satellite repeat accumulation. Linkage disequilibrium, showing the influences of early domestication of large herds of female horses, is intermediate in length between dog and human, and there is long-range haplotype sharing among breeds.
Resumo:
Bathurst Harbour in World Heritage southwest Tasmania, Australia, is one of the world’s most pristine estuarine systems. At present there is a lack of data on pollution impacts or long-term natural variability in the harbor. A ca. 350-year-old 210Pb-dated sediment core was analysed for trace metals to track pollution impacts from local and long-range sources. Lead and antimony increased from AD 1870 onwards, which likely reflects remote (i.e. mainland Australian and global) atmospheric pollution sources. Variability in the concentrations of copper and zinc closely followed the history of mining activities in western Tasmania, which began in the AD 1880s. Tin was generally low throughout the core, except for a large peak in AD 1989 ± 0.5 years, which may be a consequence of input from a local small-scale alluvial tin mine. Changes in diatom assemblages were also investigated. The diatom flora was composed mostly of planktonic freshwater and benthic brackish-marine species, consistent with stratified estuarine conditions. Since mining began, however, an overall decrease in the proportion of planktonic to benthic taxa occurred, with the exception of two distinct peaks in the twentieth century that coincided with periods of high rainfall. Despite the region’s remoteness, trace metal analyses revealed evidence of atmospheric pollution from Tasmanian and possibly longer-range mining activities. This, together with recent low rainfall, appears to have contributed to altering the diatom assemblages in one of the most pristine temperate estuaries in the world.