20 resultados para load cell
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Background Most adults infected with HIV achieve viral suppression within a year of starting combination antiretroviral therapy (cART). It is important to understand the risk of AIDS events or death for patients with a suppressed viral load. Methods and Findings Using data from the Collaboration of Observational HIV Epidemiological Research Europe (2010 merger), we assessed the risk of a new AIDS-defining event or death in successfully treated patients. We accumulated episodes of viral suppression for each patient while on cART, each episode beginning with the second of two consecutive plasma viral load measurements <50 copies/µl and ending with either a measurement >500 copies/µl, the first of two consecutive measurements between 50–500 copies/µl, cART interruption or administrative censoring. We used stratified multivariate Cox models to estimate the association between time updated CD4 cell count and a new AIDS event or death or death alone. 75,336 patients contributed 104,265 suppression episodes and were suppressed while on cART for a median 2.7 years. The mortality rate was 4.8 per 1,000 years of viral suppression. A higher CD4 cell count was always associated with a reduced risk of a new AIDS event or death; with a hazard ratio per 100 cells/µl (95% CI) of: 0.35 (0.30–0.40) for counts <200 cells/µl, 0.81 (0.71–0.92) for counts 200 to <350 cells/µl, 0.74 (0.66–0.83) for counts 350 to <500 cells/µl, and 0.96 (0.92–0.99) for counts ≥500 cells/µl. A higher CD4 cell count became even more beneficial over time for patients with CD4 cell counts <200 cells/µl. Conclusions Despite the low mortality rate, the risk of a new AIDS event or death follows a CD4 cell count gradient in patients with viral suppression. A higher CD4 cell count was associated with the greatest benefit for patients with a CD4 cell count <200 cells/µl but still some slight benefit for those with a CD4 cell count ≥500 cells/µl.
Resumo:
BACKGROUND: CD4+ T-cell recovery in patients with continuous suppression of plasma HIV-1 viral load (VL) is highly variable. This study aimed to identify predictive factors for long-term CD4+ T-cell increase in treatment-naive patients starting combination antiretroviral therapy (cART). METHODS: Treatment-naive patients in the Swiss HIV Cohort Study reaching two VL measurements <50 copies/ml >3 months apart during the 1st year of cART were included (n=1816 patients). We studied CD4+ T-cell dynamics until the end of suppression or up to 5 years, subdivided into three periods: 1st year, years 2-3 and years 4-5 of suppression. Multiple median regression adjusted for repeated CD4+ T-cell measurements was used to study the dependence of CD4+ T-cell slopes on clinical covariates and drug classes. RESULTS: Median CD4+ T-cell increases following VL suppression were 87, 52 and 19 cells/microl per year in the three periods. In the multiple regression model, median CD4+ T-cell increases over all three periods were significantly higher for female gender, lower age, higher VL at cART start, CD4+ T-cell <650 cells/microl at start of the period and low CD4+ T-cell increase in the previous period. Patients on tenofovir showed significantly lower CD4+ T-cell increases compared with stavudine. CONCLUSIONS: In our observational study, long-term CD4+ T-cell increase in drug-naive patients with suppressed VL was higher in regimens without tenofovir. The clinical relevance of these findings must be confirmed in, ideally, clinical trials or large, collaborative cohort projects but could influence treatment of older patients and those starting cART at low CD4+ T-cell levels.
Resumo:
In low-income settings, treatment failure is often identified using CD4 cell count monitoring. Consequently, patients remain on a failing regimen, resulting in a higher risk of transmission. We investigated the benefit of routine viral load monitoring for reducing HIV transmission.
Resumo:
Objectives: To compare outcomes of antiretroviral therapy (ART) in South Africa, where viral load monitoring is routine, with those in Malawi and Zambia, where monitoring is based on CD4 cell counts. Methods: We included 18 706 adult patients starting ART in South Africa and 80 937 patients in Zambia or Malawi. We examined CD4 responses in models for repeated measures and the probability of switching to second-line regimens, mortality and loss to follow-up in multistate models, measuring time from 6 months. Results: In South Africa, 9.8% [95% confidence interval (CI) 9.1–10.5] had switched at 3 years, 1.3% (95% CI 0.9–1.6) remained on failing first-line regimens, 9.2% (95% CI 8.5–9.8) were lost to follow-up and 4.3% (95% CI 3.9–4.8) had died. In Malawi and Zambia, more patients were on a failing first-line regimen [3.7% (95% CI 3.6–3.9], fewer patients had switched [2.1% (95% CI 2.0–2.3)] and more patients were lost to follow-up [15.3% (95% CI 15.0–15.6)] or had died [6.3% (95% CI 6.0–6.5)]. Median CD4 cell counts were lower in South Africa at the start of ART (93 vs. 132 cells/μl; P < 0.001) but higher after 3 years (425 vs. 383 cells/μl; P < 0.001). The hazard ratio comparing South Africa with Malawi and Zambia after adjusting for age, sex, first-line regimen and CD4 cell count was 0.58 (0.50–0.66) for death and 0.53 (0.48–0.58) for loss to follow-up. Conclusion: Over 3 years of ART mortality was lower in South Africa than in Malawi or Zambia. The more favourable outcome in South Africa might be explained by viral load monitoring leading to earlier detection of treatment failure, adherence counselling and timelier switching to second-line ART.
Resumo:
The largest mucosal surface in the body is in the gastrointestinal tract, a location that is heavily colonized by microbes that are normally harmless. A key mechanism required for maintaining a homeostatic balance between this microbial burden and the lymphocytes that densely populate the gastrointestinal tract is the production and transepithelial transport of poly-reactive IgA (ref. 1). Within the mucosal tissues, B cells respond to cytokines, sometimes in the absence of T-cell help, undergo class switch recombination of their immunoglobulin receptor to IgA, and differentiate to become plasma cells. However, IgA-secreting plasma cells probably have additional attributes that are needed for coping with the tremendous bacterial load in the gastrointestinal tract. Here we report that mouse IgA(+) plasma cells also produce the antimicrobial mediators tumour-necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS), and express many molecules that are commonly associated with monocyte/granulocytic cell types. The development of iNOS-producing IgA(+) plasma cells can be recapitulated in vitro in the presence of gut stroma, and the acquisition of this multifunctional phenotype in vivo and in vitro relies on microbial co-stimulation. Deletion of TNF-α and iNOS in B-lineage cells resulted in a reduction in IgA production, altered diversification of the gut microbiota and poor clearance of a gut-tropic pathogen. These findings reveal a novel adaptation to maintaining homeostasis in the gut, and extend the repertoire of protective responses exhibited by some B-lineage cells.
Resumo:
Background Although CD4 cell count monitoring is used to decide when to start antiretroviral therapy in patients with HIV-1 infection, there are no evidence-based recommendations regarding its optimal frequency. It is common practice to monitor every 3 to 6 months, often coupled with viral load monitoring. We developed rules to guide frequency of CD4 cell count monitoring in HIV infection before starting antiretroviral therapy, which we validated retrospectively in patients from the Swiss HIV Cohort Study. Methodology/Principal Findings We built up two prediction rules (“Snap-shot rule” for a single sample and “Track-shot rule” for multiple determinations) based on a systematic review of published longitudinal analyses of CD4 cell count trajectories. We applied the rules in 2608 untreated patients to classify their 18 061 CD4 counts as either justifiable or superfluous, according to their prior ≥5% or <5% chance of meeting predetermined thresholds for starting treatment. The percentage of measurements that both rules falsely deemed superfluous never exceeded 5%. Superfluous CD4 determinations represented 4%, 11%, and 39% of all actual determinations for treatment thresholds of 500, 350, and 200×106/L, respectively. The Track-shot rule was only marginally superior to the Snap-shot rule. Both rules lose usefulness for CD4 counts coming near to treatment threshold. Conclusions/Significance Frequent CD4 count monitoring of patients with CD4 counts well above the threshold for initiating therapy is unlikely to identify patients who require therapy. It appears sufficient to measure CD4 cell count 1 year after a count >650 for a threshold of 200, >900 for 350, or >1150 for 500×106/L, respectively. When CD4 counts fall below these limits, increased monitoring frequency becomes advisable. These rules offer guidance for efficient CD4 monitoring, particularly in resource-limited settings.
Resumo:
In order to achieve host cell entry, the apicomplexan parasite Neospora caninum relies on the contents of distinct organelles, named micronemes, rhoptries and dense granules, which are secreted at defined timepoints during and after host cell entry. It was shown previously that a vaccine composed of a mixture of three recombinant antigens, corresponding to the two microneme antigens NcMIC1 and NcMIC3 and the rhoptry protein NcROP2, prevented disease and limited cerebral infection and transplacental transmission in mice. In this study, we selected predicted immunogenic domains of each of these proteins and created four different chimeric antigens, with the respective domains incorporated into these chimers in different orders. Following vaccination, mice were challenged intraperitoneally with 2 × 10(6)N. caninum tachzyoites and were then carefully monitored for clinical symptoms during 4 weeks post-infection. Of the four chimeric antigens, only recNcMIC3-1-R provided complete protection against disease with 100% survivors, compared to 40-80% of survivors in the other groups. Serology did not show any clear differences in total IgG, IgG1 and IgG2a levels between the different treatment groups. Vaccination with all four chimeric variants generated an IL-4 biased cytokine expression, which then shifted to an IFN-γ-dominated response following experimental infection. Sera of recNcMIC3-1-R vaccinated mice reacted with each individual recombinant antigen, as well as with three distinct bands in Neospora extracts with similar Mr as NcMIC1, NcMIC3 and NcROP2, and exhibited distinct apical labeling in tachyzoites. These results suggest that recNcMIC3-1-R is an interesting chimeric vaccine candidate and should be followed up in subsequent studies in a fetal infection model.
Resumo:
The "gold standard" for treatment of intervertebral disc herniations and degenerated discs is still spinal fusion, corresponding to the saying "no disc - no pain". Mechanical prostheses, which are currently implanted, do only have medium outcome success and have relatively high re-operation rates. Here, we discuss some of the biological intervertebral disc replacement approaches, which can be subdivided into at least two classes in accordance to the two different tissue types, the nucleus pulposus (NP) and the annulus fibrosus (AF). On the side of NP replacement hydrogels have been extensively tested in vitro and in vivo. However, these gels are usually a trade-off between cell biocompatibility and load-bearing capacity, hydrogels which fulfill both are still lacking. On the side of AF repair much less is known and the question of the anchoring of implants is still to be addressed. New hope for cell therapy comes from developmental biology investigations on the existence of intervertebral disc progenitor cells, which would be an ideal cell source for cell therapy. Also notochordal cells (remnants of the embryonic notochord) have been recently pushed back into focus since these cells have regenerative potential and can activate disc cells. Growth factor treatment and molecular therapies could be less problematic. The biological solutions for NP and AF replacement are still more fiction than fact. However, tissue engineering just scratched the tip of the iceberg, more satisfying solutions are yet to be added to the biomedical pipeline.
Resumo:
CD4+ T cells are involved in several immune response pathways used to control viral infections. In this study, a group of genetically defined goats was immunized with a synthetic peptide known to encompass an immunodominant helper T-cell epitope of caprine arthritis encephalitis virus (CAEV). Fifty-five days after challenge with the molecularly cloned CAEV strain CO, the vaccinated animals had a higher proviral load than the controls. The measurement of gamma interferon and interleukin-4 gene expression showed that these cytokines were reliable markers of an ongoing immune response but their balance did not account for more or less efficient control of CAEV replication. In contrast, granulocyte-macrophage colony-stimulating factor appeared to be a key cytokine that might support virus replication in the early phase of infection. The observation of a potential T-cell-mediated enhancement of virus replication supports other recent findings showing that lentivirus-specific T cells can be detrimental to the host, suggesting caution in designing vaccine candidates.
Resumo:
BACKGROUND: Although combination antiretroviral therapy (cART) dramatically reduces rates of AIDS and death, a minority of patients experience clinical disease progression during treatment. OBJECTIVE: To investigate whether detection of CXCR4(X4)-specific strains or quantification of X4-specific HIV-1 load predict clinical outcome. METHODS: From the Swiss HIV Cohort Study, 96 participants who initiated cART yet subsequently progressed to AIDS or death were compared with 84 contemporaneous, treated nonprogressors. A sensitive heteroduplex tracking assay was developed to quantify plasma X4 and CCR5 variants and resolve HIV-1 load into coreceptor-specific components. Measurements were analyzed as cofactors of progression in multivariable Cox models adjusted for concurrent CD4 cell count and total viral load, applying inverse probability weights to adjust for sampling bias. RESULTS: Patients with X4 variants at baseline displayed reduced CD4 cell responses compared with those without X4 strains (40 versus 82 cells/microl; P = 0.012). The adjusted multivariable hazard ratio (HR) for clinical progression was 4.8 [95% confidence interval (CI) 2.3-10.0] for those demonstrating X4 strains at baseline. The X4-specific HIV-1 load was a similarly independent predictor, with HR values of 3.7 (95% CI, 1.2-11.3) and 5.9 (95% CI, 2.2-15.0) for baseline loads of 2.2-4.3 and > 4.3 log10 copies/ml, respectively, compared with < 2.2 log10 copies/ml. CONCLUSIONS: HIV-1 coreceptor usage and X4-specific viral loads strongly predicted disease progression during cART, independent of and in addition to CD4 cell count or total viral load. Detection and quantification of X4 strains promise to be clinically useful biomarkers to guide patient management and study HIV-1 pathogenesis.
Resumo:
The dynamics of HIV-1 RNA during structured treatment interruptions (STIs) are well established, but little is known about viral proteins like p24. We studied 65 participants of an STI trial. Before the trial, continuous highly active antiretroviral therapy (HAART) had suppressed their viral load to <50 copies/mL during 6 months. They then interrupted HAART during weeks 1 through 2, 11 through 12, 21 through 22, 31 through 32, and 41 through 52. The p24 was measured by boosted enzyme-linked immunosorbent assay of plasma pretreated by efficient virus disruption and heat denaturation. At time point 0, p24 was measurable in 22 patients (34%), who had maintained a viral load <50 copies/mL for 25.4 months (median, range: 6.2-38.9 months) under HAART. Viral rebounds during 2-week STIs led to a mean p24 increase of only 0.08 to 0.19 log10 (ie, 20%-60%). Pre-HAART viral load and p24 at time 0 independently predicted p24 rebounds during the 4 2-week STIs. The p24 at time 0 and HIV-1 RNA rebound during weeks 41 through 52 independently determined the concomitant p24 rebound. An increase of p24 but not viral load during the first 8 weeks of the long STI correlated significantly with concomitant CD4(+) T cell loss. Persisting p24 despite successful HAART may reflect virus replication in reservoirs not represented by plasma viral load and has implications for the concept of therapeutic vaccination.
Resumo:
BACKGROUND: The CD4 T cell count recovery in human immunodeficiency virus type 1 (HIV-1)-infected individuals receiving potent antiretroviral therapy (ART) shows high variability. We studied the determinants and the clinical relevance of incomplete CD4 T cell restoration. METHODS: Longitudinal CD4 T cell count was analyzed in 293 participants of the Swiss HIV Cohort Study who had had a plasma HIV-1 RNA load <1000 copies/mL for > or =5 years. CD4 T cell recovery was stratified by CD4 T cell count 5 years after initiation of ART (> or =500 cells/microL was defined as a complete response, and <500 cells/microL was defined as an incomplete response). Determinants of incomplete responses and clinical events were evaluated using logistic regression and survival analyses. RESULTS: The median CD4 T cell count increased from 180 cells/microL at baseline to 576 cells/microL 5 years after ART initiation. A total of 35.8% of patients were incomplete responders, of whom 47.6% reached a CD4 T cell plateau <500 cells/microL. Centers for Disease Control and Prevention HIV-1 disease category B and/or C events occurred in 21% of incomplete responders and in 14.4% of complete responders (P>.05). Older age (adjusted odds ratio [aOR], 1.71 per 10-year increase; 95% confidence interval [CI], 1.21-2.43), lower baseline CD4 T cell count (aOR, 0.37 per 100-cell increase; 95% CI, 0.28-0.49), and longer duration of HIV infection (aOR, 2.39 per 10-year increase; 95% CI, 1.19-4.81) were significantly associated with a CD4 T cell count <500 cells/microL at 5 years. The median increases in CD4 T cell count after 3-6 months of ART were smaller in incomplete responders (P<.001) and predicted, in conjunction with baseline CD4 T cell count and age, incomplete response with 80% sensitivity and 72% specificity. CONCLUSION: Individuals with incomplete CD4 T cell recovery to <500 cells/microL had more advanced HIV-1 infection at baseline. CD4 T cell changes during the first 3-6 months of ART already reflect the capacity of the immune system to replenish depleted CD4 T lymphocytes.
Resumo:
BACKGROUND: In high-income countries, viral load is routinely measured to detect failure of antiretroviral therapy (ART) and guide switching to second-line ART. Viral load monitoring is not generally available in resource-limited settings. We examined switching from nonnucleoside reverse transcriptase inhibitor (NNRTI)-based first-line regimens to protease inhibitor-based regimens in Africa, South America and Asia. DESIGN AND METHODS: Multicohort study of 17 ART programmes. All sites monitored CD4 cell count and had access to second-line ART and 10 sites monitored viral load. We compared times to switching, CD4 cell counts at switching and obtained adjusted hazard ratios for switching (aHRs) with 95% confidence intervals (CIs) from random-effects Weibull models. RESULTS: A total of 20 113 patients, including 6369 (31.7%) patients from 10 programmes with access to viral load monitoring, were analysed; 576 patients (2.9%) switched. Low CD4 cell counts at ART initiation were associated with switching in all programmes. Median time to switching was 16.3 months [interquartile range (IQR) 10.1-26.6] in programmes with viral load monitoring and 21.8 months (IQR 14.0-21.8) in programmes without viral load monitoring (P < 0.001). Median CD4 cell counts at switching were 161 cells/microl (IQR 77-265) in programmes with viral load monitoring and 102 cells/microl (44-181) in programmes without viral load monitoring (P < 0.001). Switching was more common in programmes with viral load monitoring during months 7-18 after starting ART (aHR 1.38; 95% CI 0.97-1.98), similar during months 19-30 (aHR 0.97; 95% CI 0.58-1.60) and less common during months 31-42 (aHR 0.29; 95% CI 0.11-0.79). CONCLUSION: In resource-limited settings, switching to second-line regimens tends to occur earlier and at higher CD4 cell counts in ART programmes with viral load monitoring compared with programmes without viral load monitoring.
Resumo:
OBJECTIVES: To examine the accuracy of the World Health Organization immunological criteria for virological failure of antiretroviral treatment. METHODS: Analysis of 10 treatment programmes in Africa and South America that monitor both CD4 cell counts and HIV-1 viral load. Adult patients with at least two CD4 counts and viral load measurements between month 6 and 18 after starting a non-nucleoside reverse transcriptase inhibitor-based regimen were included. WHO immunological criteria include CD4 counts persistently <100 cells/microl, a fall below the baseline CD4 count, or a fall of >50% from the peak value. Virological failure was defined as two measurements > or =10 0000 copies/ml (higher threshold) or > or =500 copies/ml (lower threshold). Measures of accuracy with exact binomial 95% confidence intervals (CI) were calculated. RESULTS: A total of 2009 patients were included. During 1856 person-years of follow up 63 patients met the immunological criteria and 35 patients (higher threshold) and 95 patients (lower threshold) met the virological criteria. Sensitivity [95% confidence interval (CI)] was 17.1% (6.6-33.6%) for the higher and 12.6% (6.7-21.0%) for the lower threshold. Corresponding results for specificity were 97.1% (96.3-97.8%) and 97.3% (96.5-98.0%), for positive predictive value 9.5% (3.6-19.6%) and 19.0% (10.2-30.9%) and for negative predictive value 98.5% (97.9-99.0%) and 95.7% (94.7-96.6%). CONCLUSIONS: The positive predictive value of the WHO immunological criteria for virological failure of antiretroviral treatment in resource-limited settings is poor, but the negative predictive value is high. Immunological criteria are more appropriate for ruling out than for ruling in virological failure in resource-limited settings.
Resumo:
PURPOSE: To report the clinical experience with external beam radiotherapy (RT) for AIDS-related lymphoma (ARL) with or without the involvement of the central nervous system (CNS) in HIV-infected patients. PATIENTS AND METHODS: Clinical outcome of 24 HIV-seropositive patients with ARL treated with RT from 1995 to 2004 was reviewed, testing factors associated with outcome. RESULTS: After 1 and 5 years, the overall survival was 65% and 35%, respectively. The mean RT dose was 31 Gy after normalization to fractions of daily 2 Gy (range, 7.8-47.2 Gy). Radiotherapy dose was associated with survival in univariate (P = .04) and multivariate analysis (P = .01). Other factors in univariate analysis associated with outcome were viral load (VL), highly active antiretroviral therapy (HAART), ARL stage, and CNS involvement. Patients with CNS involvement achieved complete response in 46% and improved clinical performance was seen in 73%. CONCLUSIONS: After chemotherapy, RT in combination with HAART is highly active, and RT should be encouraged especially after suboptimal responses to induction treatment.