98 resultados para live attenuated

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Classical swine fever (CSF) causes major losses in pig farming, with various degrees of disease severity. Efficient live attenuated vaccines against classical swine fever virus (CSFV) are used routinely in endemic countries. However, despite intensive vaccination programs in these areas for more than 20 years, CSF has not been eradicated. Molecular epidemiology studies in these regions suggests that the virus circulating in the field has evolved under the positive selection pressure exerted by the immune response to the vaccine, leading to new attenuated viral variants. Recent work by our group demonstrated that a high proportion of persistently infected piglets can be generated by early postnatal infection with low and moderately virulent CSFV strains. Here, we studied the immune response to a hog cholera lapinised virus vaccine (HCLV), C-strain, in six-week-old persistently infected pigs following post-natal infection. CSFV-negative pigs were vaccinated as controls. The humoral and interferon gamma responses as well as the CSFV RNA loads were monitored for 21 days post-vaccination. No vaccine viral RNA was detected in the serum samples and tonsils from CSFV postnatally persistently infected pigs for 21 days post-vaccination. Furthermore, no E2-specific antibody response or neutralising antibody titres were shown in CSFV persistently infected vaccinated animals. Likewise, no of IFN-gamma producing cell response against CSFV or PHA was observed. To our knowledge, this is the first report demonstrating the absence of a response to vaccination in CSFV persistently infected pigs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cattle immunised with a recombinant form of p67, the major surface antigen of Theileria parva sporozoites, have been shown to be protected against parasite challenge. In an attempt to simplify the immunisation procedure live attenuated Salmonella strains expressing p67 have been constructed and used to induce anti-p67 immune responses in cattle. All animals immunised with these strains developed strong antibody responses to p67. Specific T cell responses could be detected in the majority of immunised cattle. Challenge with T. parva sporozoites revealed a significant level of protection in immunised calves compared to naive control animals or animals inoculated with non-recombinant attenuated Salmonella.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recently it has been shown in rodent malaria models that immunisation with genetically attenuated Plasmodium parasites can confer sterile protection against challenge with virulent parasites. For the mass production of live attenuated Plasmodium parasites for vaccination, safety is a prerequisite. Knockout of a single gene is not sufficient for such a strategy since the parasite can likely compensate for such a genetic modification and a single surviving parasite is sufficient to kill an immunised individual. Parasites must therefore be at least double-attenuated when generating a safe vaccine strain. Genetic double-attenuation can be achieved by knocking out two essential genes or by combining a single gene knockout with the expression of a protein toxic for the parasite. We generated a double-attenuated Plasmodium berghei strain that is deficient in fatty acid synthesis by the knockout of the pdh-e1α gene, introducing a second attenuation by the liver stage-specific expression of the pore-forming bacterial toxin perfringolysin O. With this double genetically attenuated parasite strain, a superior attenuation was indeed achieved compared with single-attenuated strains that were either deficient in pyruvate dehydrogenase (PDH)-E1 or expressed perfringolysin O. In vivo, both single-attenuated strains resulted in breakthrough infections even if low to moderate doses of sporozoites (2,000-5,000) were administered. In contrast, the double genetically attenuated parasite strain, given at moderate doses of 5,000 sporozoites, did not result in blood stage infection and even when administered at 5- to 20-fold higher doses, only single and delayed breakthrough infections were observed. Prime booster immunisation with the double genetically attenuated parasite strain completely protected a susceptible mouse strain from malaria and even a single immunisation conferred protection in some cases and lead to a markedly delayed onset of blood stage infection in others. Importantly, premature rupture of the parasitophorous vacuole membrane by liver stage-specific perfringolysin O expression did not induce host cell death and soluble parasite proteins, which are released into the host cell cytoplasm, have the potential to be processed and presented via MHC class I molecules. This, in turn, might support immunological responses against Plasmodium-infected hepatocytes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Contagious bovine pleuropneumonia (CBPP) is the most serious cattle disease in Africa, caused by Mycoplasma mycoides subsp. mycoides small-colony type (SC). CBPP control strategies currently rely on vaccination with a vaccine based on live attenuated strains of the organism. Recently, an lppQ(-) mutant of the existing vaccine strain T1/44 has been developed (Janis et al., 2008). This T1lppQ(-) mutant strain is devoid of lipoprotein LppQ, a potential virulence attribute of M. mycoides subsp. mycoides SC. It is designated as a potential live DIVA (Differentiating Infected from Vaccinated Animals) vaccine strain allowing both serological and etiological differentiation. The present paper reports on the validation of a control strategy for CBPP in cattle, whereby a TaqMan real-time PCR based on the lppQ gene has been developed for the direct detection of M. mycoides subsp. mycoides SC in ex vivo bronchoalveolar lavage fluids of cows and for the discrimination of wild type strains from the lppQ(-) mutant vaccine strain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As a first step towards a vaccine against diarrhoeal disease caused by enterotoxigenic Escherichia coli (ETEC), we have studied the expression of several ETEC antigens in the live attenuated Vibrio cholerae vaccine strain CVD 103-HgR. Colonization factors (CF) CFA/I, CS3, and CS6 were expressed at the surface of V. cholerae CVD 103-HgR. Both CFA/I and CS3 required the co-expression of a positive regulator for expression, while CS6 was expressed without regulation. Up-regulation of CF expression in V. cholerae was very efficient, so that high amounts of CFA/I and CS3 similar to those in wild-type ETEC were synthesized from chromosomally integrated CF and positive regulator loci. Increasing either the operon and/or the positive regulator gene dosage resulted in only a small increase in CFA/I and CS3 expression. In contrast, the level of expression of the non-regulated CS6 fimbriae appeared to be more dependent on gene dosage. While CF expression in wild-type ETEC is known to be tightly thermoregulated and medium dependent, it seems to be less stringent in V. cholerae. Finally, co-expression of two or three CFs in the same strain was efficient even under the control of one single regulator gene.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Live attenuated Salmonella are attractive vaccine candidates for mucosal application because they induce both mucosal immune responses and systematic immune responses. After breaking the epithelium barrier, Salmonella typhimurium is found within dendritic cells (DC) in the Peyer's patches. Although there are abundant data on the interaction of S. typhimurium with murine epithelial cells, macrophages and DC, little is known about its interaction with human DC. Live attenuated S. typhimurium have recently been shown to efficiently infect human DC in vitro and induce production of cytokines. In this study, we have analysed the morphological consequences of infection of human DC by the attenuated S. typhimurium mutant strains designated PhoPc, AroA and SipB and the wild-type strains of the American Type Culture Collection (Manassas, VA, USA), ATCC 14028 and ATCC C53, by electron microscopy at 30 min, 3 h and 24 h after exposure. Our results show that genetic background of the strains profoundly influence DC morphology following infection. The changes included (i) membrane ruffling; (ii) formation of tight or spacious phagosomes; (iii) apoptosis; and (iv) spherical, pedunculated membrane-bound microvesicles that project from the plasma membrane. Despite the fact that membrane ruffling was much more pronounced with the two virulent strains, all mutants were taken up by the DC. The microvesicles were induced by all the attenuated strains, including SipB, which did not induce apoptosis in the host cell. These results suggest that Salmonella is internalized by human DC, inducing morphological changes in the DC that could explain immunogenicity of the attenuated strains.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Since the introduction of effective antiretroviral therapy (ART), HIV-infected individuals are travelling more frequently and international travel has become much safer. Specific concerns include the safety of ART during travel, drug adherence and interaction considerations, and effects of immunosuppression. This review describes potentially important infections, vaccine effectiveness, safety and special approaches for their use, and HIV-related issues regarding predeparture counselling. With advanced immunosuppression (CD4+ T-cell count < 200/microl or < 14%), the immunogenicity of several vaccines is reduced, complications could occur after live attenuated vaccines and certain infections acquired during travel may be more frequent or severe. Challenges include the best options for malaria chemoprophylaxis, standby treatment and medical follow-up of the increasing number of HIV-infected long-term travellers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Live attenuated vaccines provide the most consistent protective immunity in experimental models of lentivirus infections. In this study we tested the hypothesis that animals infected with a naturally attenuated small ruminant lentivirus field strain of genotype E may control a challenge infection with a virulent strain of the caprine arthritis encephalitis virus (CAEV-CO). Within genotype E, Roccaverano strain has been described as attenuated since decreased arthritic pathological indexes were recorded in Roccaverano-infected animals compared to animals of the same breed infected with genotype B strains. Moreover, under natural conditions, animals double-infected with genotypes B and E appear less prone to develop SRLV-related disease, leading to a putative protective role of Roccaverano strain. Here we present evidence that goats experimentally infected with the avirulent genotype E SRLV-Roccaverano strain control the proviral load of a pathogenic challenge virus (CAEV-CO strain) more efficiently than naïve animals and appear to limit the spread of histological lesions to the contralateral joints.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bluetongue virus (BTV) is an economically important member of the genus Orbivirus and closely related to African horse sickness virus (AHSV) and Epizootic hemorrhagic disease virus (EHDV). Currently, 26 different serotypes of BTV are known. The virus is transmitted by blood-feeding Culicoides midges and causes disease (bluetongue [BT]) in ruminants. In 2006/2007, BTV serotype 8 (BTV-8) caused widespread outbreaks of BT amongst livestock in Europe, which were eventually controlled employing a conventionally inactivated BTV vaccine. However, this vaccine did not allow the discrimination of infected from vaccinated animals (DIVA) by the commonly used VP7 cELISA. RNA replicon vectors based on propagation-incompetent recombinant vesicular stomatitis virus (VSV) represent a novel vaccine platform that combines the efficacy of live attenuated vaccines with the safety of inactivated vaccines. Our goal was to generate an RNA replicon vaccine for BTV-8, which is safe, efficacious, adaptable to emerging orbivirus infections , and compliant with the DIVA principle. The VP2, VP5, VP3 and VP7 genes encoding the BTV-8 capsid proteins, as well as the non-structural proteins NS1 and NS3 were inserted into a VSV vector genome lacking the essential VSV glycoprotein (G) gene. Infectious virus replicon particles (VRP) were produced on a transgenic helper cell line providing the VSV G protein in trans. Expression of antigens in vitro was analysed by immunofluorescence using monoclonal and polyclonal antibodies. In a pilot study, sheep were immunized with two different VRP-based vaccine candidates, one comprising the BTV-8 antigens VP2, VP5, VP3, VP7, NS1, and NS3, the other one containing antigens VP3, VP7, NS1, and NS3. Control animals received VRPs containing an irrelevant antigen. Virus neutralizing antibodies and protection after BTV-8 challenge were evaluated and compared to animals immunized with the conventionally inactivated vaccine. Full protection was induced only when the two antigens VP2 and VP5 were included in the vaccine. To further evaluate if VP2 alone, a combination of VP2 and VP5 or VP5 alone were necessary for complete protection, we performed a second animal trial. Interestingly, VP2 as well as the combination of VP2 and VP5 but not VP5 alone conferred full protection in terms of neutralizing antibodies, and protection from clinical signs and viremia after BTV-8 challenge. These results show that the VSV replicon system represents a safe, efficacious and DIVA-compliant vaccine against BTV as well as a possible platform for protection against other Orbiviruses, such as AHSV and EHDV.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Classical swine fever (CSF) caused by CSF virus (CSFV) is a highly contagious disease of pigs. The viral protein Npro of CSFV interferes with alpha- and beta-interferon (IFN-α/β) induction by promoting the degradation of interferon regulatory factor 3 (IRF3). During the establishment of the live attenuated CSF vaccine strain GPE-, Npro acquired a mutation that abolished its capacity to bind and degrade IRF3, rendering it unable to prevent IFN-α/β induction. In a previous study, we showed that the GPE- vaccine virus became pathogenic after forced serial passages in pigs, which was attributed to the amino acid substitutions T830A in the viral proteins E2 and V2475A and A2563V in NS4B. Interestingly, during the re-adaptation of the GPE- vaccine virus in pigs, the IRF3-degrading function of Npro was not recovered. Therefore, we examined whether restoring the ability of Npro to block IFN-α/β induction of both the avirulent and moderately virulent GPE--derived virus would enhance pathogenicity in pigs. Viruses carrying the N136D substitution in Npro regained the ability to degrade IRF3 and suppress IFN-α/β induction in vitro. In pigs, functional Npro significantly reduced the local IFN-α mRNA expression in lymphoid organs while it increased quantities of IFN-α/β in the circulation, and enhanced pathogenicity of the moderately virulent virus. In conclusion, the present study demonstrates that functional Npro influences the innate immune response at local sites of virus replication in pigs and contributes to pathogenicity of CSFV in synergy with viral replication.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neospora caninum is an intracellular apicomplexan parasite, which is a leading cause of abortion in cattle; thus neosporosis represents an important veterinary health problem and is of high economic significance. The parasite can infect cattle via trans-placental transmission from an infected cow to its fetus (vertical transmission), or through the oral route via ingestion of food or water contaminated with oocysts that were previously shed with the feces of a canid definitive host (horizontal transmission). Although vaccination was considered a rational strategy to prevent bovine neosporosis, the only commercialized vaccine (Neoguard®) produced ambiguous results with relatively low efficacy, and was recently removed from the market. Therefore, there is a need to develop an efficient vaccine capable of preventing both, the horizontal transmission through infected food or water to a naïve animal as well as the vertical transmission from infected but clinically asymptomatic dams to the fetus. Different vaccine strategies have been investigated, including the use of live attenuated vaccines, killed parasite lysates, total antigens or antigen fractions from killed parasites, and subunit vaccines. The vast majority of experimental studies were performed in mice, and to a certain extent in gerbils, but there is also a large number of investigations that were conducted in cattle and sheep. However, it is difficult to directly compare these studies due to the high variability of the parameters employed. In this review, we will summarize the recent advances made in vaccine development against N. caninum in cattle and in mice and highlight the most important factors, which are likely to influence the degree of protection mediated by vaccination.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neospora caninum is a leading cause of abortion in cattle, and is thus an important veterinary health problem of high economic significance. Vaccination has been considered a viable strategy to prevent bovine neosporosis. Different approaches have been investigated, and to date the most promising results have been achieved with live-attenuated vaccines. Subunit vaccines have also been studied, and most of them represented components that are functionally involved in (i) the physical interaction between the parasite and its host cell during invasion or (ii) tachyzoite-to-bradyzoite stage conversion. Drugs have been considered as an option to limit the effects of vertical transmission of N. caninum. Promising results with a small panel of compounds in small laboratory animal models indicate the potential value of a chemotherapeutical approach for the prevention of neosporosis in ruminants. For both, vaccines and drugs, the key for success in preventing vertical transmission lies in the application of bioactive compounds that limit parasite proliferation and dissemination, without endangering the developing fetus not only during an exogenous acute infection but also during recrudescence of a chronic infection. In this review, the current status of vaccine and drug development is presented and novel strategies against neosporosis are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Personen mit einer HIV-Infektion, nach einer Organ- oder einer hämatologischen Stammzelltransplantation oder mit einer funktionalen oder anatomischen Asplenie sind gegenüber Infektionen anfälliger. Sie haben eine grössere Komplikationsrate und ein höheres Risiko für einen chronifizierten Verlauf. Impfungen wären eine ideale primäre Präventionsmassnahme, sind aber – durch dieselben Mechanismen des Immundefektes der zu schwereren Krankheitsverläufen führt – in ihrer Wirksamkeit vermindert. Die Impfungen sollen daher, wenn immer möglich, vor Beginn der Immunsuppression oder später zum Zeitpunkt der minimalsten Immunsuppression, durchgeführt werden. Trotzdem bleibt der Benefit von Impfungen bei immunsupprimierten Personen unbestritten, sofern die Indikationsstellung bezüglich Zeitpunkt und Dosierung (Dosismenge und -anzahl), die zu einem maximalen Ansprechen führt, beachtet wird. Lebendimpfungen sind wegen der Gefahr der unkontrollierten Vermehrung der Impfviren bei schwerer Immunsuppression kontraindiziert. Die Serologie soll unspezifischer gemessen werden, da schwer immunsupprimierte Personen im Falle einer relevanten Exposition durch passive Immunisierung mittels spezifischer oder unspezifischer intravenöser Immunglobuline geschützt werden können.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Salmonella enterica serovar Typhimurium has long been recognised as a zoonotic pathogen of economic significance in animals and humans. Attempts to protect humans and livestock may be based on immunization with vaccines aimed to induce a protective response. We recently demonstrated that the oral administration of a Salmonella enterica serovar Typhimurium strain unable to synthesize the zinc transporter ZnuABC is able to protect mice against systemic salmonellosis induced by a virulent homologous challenge. This finding suggested that this mutant strain could represent an interesting candidate vaccine for mucosal delivery. In this study, the protective effect of this Salmonella strain was tested in a streptomycin-pretreated mouse model of salmonellosis that is distinguished by the capability of evoking typhlitis and colitis. The here reported results demonstrate that mice immunized with Salmonella enterica serovar Typhimurium (S. Typhimurium) SA186 survive to the intestinal challenge and, compared to control mice, show a reduced number of virulent bacteria in the gut, with milder signs of inflammation. This study demonstrates that the oral administration a of S. Typhimurium strain lacking ZnuABC is able to elicit an effective immune response which protects mice against intestinal S. Typhimurium infection. These results, collectively, suggest that the streptomycin-pretreated mouse model of S. typhimurium infection can represent a valuable tool to screen S. typhimurium attenuated mutant strains and potentially help to assess their protective efficacy as potential live vaccines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Live vaccines possess the advantage of having access to induce cell-mediated and antibody-mediated immunity; thus in certain cases they are able to prevent infection, and not only disease. Furthermore, live vaccines, particularly bacterial live vaccines, are relatively cheap to produce and easy to apply. Hence they are suitable to immunize large communities or herds. The induction of both cell-mediated immunity as well as antibody-mediated immunity, which is particularly beneficial in inducing mucosal immune responses, is obtained by the vaccine-strain's ability to colonize and multiply in the host without causing disease. For this reason, live vaccines require attenuation of virulence of the bacterium to which immunity must be induced. Traditionally attenuation was achieved simply by multiple passages of the microorganism on growth medium, in animals, eggs or cell cultures or by chemical or physical mutagenesis, which resulted in random mutations that lead to attenuation. In contrast, novel molecular methods enable the development of genetically modified organisms (GMOs) targeted to specific genes that are particularly suited to induce attenuation or to reduce undesirable effects in the tissue in which the vaccine strains can multiply and survive. Since live vaccine strains (attenuated by natural selection or genetic engineering) are potentially released into the environment by the vaccinees, safety issues concerning the medical as well as environmental aspects must be considered. These involve (i) changes in cell, tissue and host tropism, (ii) virulence of the carrier through the incorporation of foreign genes, (iii) reversion to virulence by acquisition of complementation genes, (iv) exchange of genetic information with other vaccine or wild-type strains of the carrier organism and (v) spread of undesired genes such as antibiotic resistance genes. Before live vaccines are applied, the safety issues must be thoroughly evaluated case-by-case. Safety assessment includes knowledge of the precise function and genetic location of the genes to be mutated, their genetic stability, potential reversion mechanisms, possible recombination events with dormant genes, gene transfer to other organisms as well as gene acquisition from other organisms by phage transduction, transposition or plasmid transfer and cis- or trans-complementation. For this, GMOs that are constructed with modern techniques of genetic engineering display a significant advantage over random mutagenesis derived live organisms. The selection of suitable GMO candidate strains can be made under in vitro conditions using basic knowledge on molecular mechanisms of pathogenicity of the corresponding bacterial species rather than by in vivo testing of large numbers of random mutants. This leads to a more targeted safety testing on volunteers and to a reduction in the use of animal experimentation.