44 resultados para life resistance

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The plasma membrane constitutes a barrier that maintains the essential differences between the cytosol and the extracellular environment. Plasmalemmal injury is a common event during the life of many cells that often leads to their premature, necrotic death. Blebbing - a display of plasmalemmal protrusions - is a characteristic feature of injured cells. In this study, we disclose a previously unknown role for blebbing in furnishing resistance to plasmalemmal injury. Blebs serve as precursors for injury-induced intracellular compartments that trap damaged segments of the plasma membrane. Hence, loss of cytosol and the detrimental influx of extracellular constituents are confined to blebs that are sealed off from the cell body by plugs of annexin A1 - a Ca(2+)- and membrane-binding protein. Our findings shed light on a fundamental process that contributes to the survival of injured cells. By targeting annexin A1/blebbing, new therapeutic approaches could be developed to avert the necrotic loss of cells in a variety of human pathologies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Toll interleukin-1 receptor (IL-1R) 8 (TIR8), also known as single Ig IL-1 receptor (IL-R)-related molecule, or SIGIRR, is a member of the IL-1R-like family, primarily expressed by epithelial cells. Current evidence suggests that TIR8 plays a nonredundant role as a negative regulator in vivo under different inflammatory conditions that are dependent on IL-R and Toll-like receptor (TLR) activation. In the present study, we examined the role of TIR8 in innate resistance to acute lung infections caused by Pseudomonas aeruginosa, a Gram-negative pathogen responsible for life-threatening infections in immunocompromised individuals and cystic fibrosis patients. We show that Tir8 deficiency in mice was associated with increased susceptibility to acute P. aeruginosa infection, in terms of mortality and bacterial load, and to exacerbated local and systemic production of proinflammatory cytokines (gamma interferon [IFN-γ], tumor necrosis factor alpha [TNF-α], IL-1β, and IL-6) and chemokines (CXCL1, CXCL2, and CCL2). It has been reported that host defense against P. aeruginosa acute lung infection can be improved by blocking IL-1 since exaggerated IL-1β production may be harmful for the host in this infection. In agreement with these data, IL-1RI deficiency rescues the phenotype observed in Tir8-deficient mice: in Tir8-/- IL-1RI-/- double knockout mice we observed higher survival rates, enhanced bacterial clearance, and reduced levels of local and systemic cytokine and chemokine levels than in Tir8-deficient mice. These results suggest that TIR8 has a nonredundant effect in modulating the inflammation caused by P. aeruginosa, in particular, by negatively regulating IL-1RI signaling, which plays a major role in the pathogenesis of this infectious disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several prominent hypotheses have been posed to explain the immense variability among plant species in defense against herbivores. A major concept in the evolutionary ecology of plant defenses is that tradeoffs of defense strategies are likely to generate and maintain species diversity. In particular, tradeoffs between constitutive and induced resistance and tradeoffs relating these strategies to growth and competitive ability have been predicted. We performed three independent experiments on 58 plant species from 15 different plant families to address these hypotheses in a phylogenetic framework. Because evolutionary tradeoffs may be altered by human-imposed artificial selection, we used 18 wild plant species and 40 cultivated garden-plant species. Across all 58 plant species, we demonstrate a tradeoff between constitutive and induced resistance, which was robust to accounting for phylogenetic history of the species. Moreover, the tradeoff was driven by wild species and was not evident for cultivated species. In addition, we demonstrate that more competitive species—but not fast growing ones—had lower constitutive but higher induced resistance. Thus, our multispecies experiments indicate that the competition–defense tradeoff holds for constitutive resistance and is complemented by a positive relationship of competitive ability with induced resistance. We conclude that the studied genetically determined tradeoffs are indeed likely to play an important role in shaping the high diversity observed among plant species in resistance against herbivores and in life history traits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

New tetracycline and streptomycin resistance genes, tet(44) and ant(6)-Ib, were identified in Campylobacter fetus subsp. fetus within a transferable pathogenicity island that is typically unique to Campylobacter fetus subsp. venerealis. The 640-amino-acid tetracycline resistance determinant, Tet 44, belongs to a class of proteins that confers resistance to tetracycline and minocycline by ribosomal protection. The 286-amino-acid streptomycin resistance determinant, ANT(6)-Ib, belongs to a family of aminoglycoside nucleotidyltransferases. The resistance phenotypes were demonstrated by gene inactivation and expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To obtain genetic information about Campylobacter jejuni and Campylobacter coli from broilers and carcasses at slaughterhouses, we analyzed and compared 340 isolates that were collected in 2008 from the cecum right after slaughter or from the neck skin after processing. We performed rpoB sequence-based identification, multilocus sequence typing (MLST), and flaB sequence-based typing; we additionally analyzed mutations within the 23S rRNA and gyrA genes that confer resistance to macrolide and quinolone antibiotics, respectively. The rpoB-based identification resulted in a distribution of 72.0% C. jejuni and 28.0% C. coli. The MLST analysis revealed that there were 59 known sequence types (STs) and 6 newly defined STs. Most of the STs were grouped into 4 clonal complexes (CC) that are typical for poultry (CC21, CC45, CC257, and CC828), and these represented 61.8% of all of the investigated isolates. The analysis of 95 isolates from the cecum and from the corresponding carcass neck skin covered 44 different STs, and 54.7% of the pairs had matching genotypes. The data indicate that cross-contamination from various sources during slaughter may occur, although the majority of Campylobacter contamination on carcasses appeared to originate from the slaughtered flock itself. Mutations in the 23S rRNA gene were found in 3.1% of C. coli isolates, although no mutations were found in C. jejuni isolates. Mutations in the gyrA gene were observed in 18.9% of C. jejuni and 26.8% of C. coli isolates, which included two C. coli strains that carried mutations conferring resistance to both classes of antibiotics. A relationship between specific genotypes and antibiotic resistance/susceptibility was observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study, we aimed to evaluate the relationship between the rates of resistance of Pseudomonas aeruginosa to carbapenems and the levels and diversity of antibiotic consumption. Data were retrospectively collected from 20 acute care hospitals across 3 regions of Switzerland between 2006 and 2010. The main outcome of the present study was the rate of resistance to carbapenems among P. aeruginosa. Putative predictors included the total antibiotic consumption and carbapenem consumption in defined daily doses per 100 bed days, the proportion of very broad-spectrum antibiotics used, and the Peterson index. The present study confirmed a correlation between carbapenem use and carbapenem resistance rates at the hospital and regional levels. The impact of diversifying the range of antibiotics used against P. aeruginosa resistance was suggested by (i) a positive correlation in multivariate analysis between the above-mentioned resistance and the proportion of consumed antibiotics having a very broad spectrum of activity (coefficient = 1.77; 95% confidence interval, 0.58 to 2.96; P < 0.01) and (ii) a negative correlation between the resistance and diversity of antibiotic use as measured by the Peterson homogeneity index (coefficient = -0.52; P < 0.05). We conclude that promoting heterogeneity plus parsimony in the use of antibiotics appears to be a valuable strategy for minimizing the spread of carbapenem resistance in P. aeruginosa in hospitals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present an optimized multilocus sequence typing (MLST) scheme with universal primer sets for amplifying and sequencing the seven target genes of Campylobacter jejuni and Campylobacter coli. Typing was expanded by sequence determination of the genes flaA and flaB using optimized primer sets. This approach is compatible with the MLST and flaA schemes used in the PubMLST database and results in an additional typing method using the flaB gene sequence. An identification module based on the 16S rRNA and rpoB genes was included, as well as the genetic determination of macrolide and quinolone resistances based on mutations in the 23S rRNA and gyrA genes. Experimental procedures were simplified by multiplex PCR of the 13 target genes. This comprehensive approach was evaluated with C. jejuni and C. coli isolates collected in Switzerland. MLST of 329 strains resulted in 72 sequence types (STs) among the 186 C. jejuni strains and 39 STs for the 143 C. coli isolates. Fourteen (19%) of the C. jejuni and 20 (51%) of the C. coli STs had not been found previously. In total, 35% of the C. coli strains collected in Switzerland contained mutations conferring antibiotic resistance only to quinolone, 15% contained mutations conferring resistance only to macrolides, and 6% contained mutations conferring resistance to both classes of antibiotics. In C. jejuni, these values were 31% and 0% for quinolone and macrolide resistance, respectively. The rpoB sequence allowed phylogenetic differentiation between C. coli and C. jejuni, which was not possible by 16S rRNA gene analysis. An online Integrated Database Network System (SmartGene, Zug, Switzerland)-based platform for MLST data analysis specific to Campylobacter was implemented. This Web-based platform allowed automated allele and ST designation, as well as epidemiological analysis of data, thus streamlining and facilitating the analysis workflow. Data networking facilitates the exchange of information between collaborating centers. The described approach simplifies and improves the genotyping of Campylobacter, allowing cost- and time-efficient routine monitoring.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A disposable microarray was developed for detection of up to 90 antibiotic resistance genes in gram-positive bacteria by hybridization. Each antibiotic resistance gene is represented by two specific oligonucleotides chosen from consensus sequences of gene families, except for nine genes for which only one specific oligonucleotide could be developed. A total of 137 oligonucleotides (26 to 33 nucleotides in length with similar physicochemical parameters) were spotted onto the microarray. The microarrays (ArrayTubes) were hybridized with 36 strains carrying specific antibiotic resistance genes that allowed testing of the sensitivity and specificity of 125 oligonucleotides. Among these were well-characterized multidrug-resistant strains of Enterococcus faecalis, Enterococcus faecium, and Lactococcus lactis and an avirulent strain of Bacillus anthracis harboring the broad-host-range resistance plasmid pRE25. Analysis of two multidrug-resistant field strains allowed the detection of 12 different antibiotic resistance genes in a Staphylococcus haemolyticus strain isolated from mastitis milk and 6 resistance genes in a Clostridium perfringens strain isolated from a calf. In both cases, the microarray genotyping corresponded to the phenotype of the strains. The ArrayTube platform presents the advantage of rapidly screening bacteria for the presence of antibiotic resistance genes known in gram-positive bacteria. This technology has a large potential for applications in basic research, food safety, and surveillance programs for antimicrobial resistance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Antimicrobial susceptibility testing was performed on a total of 581 clinical Escherichia coli isolates from diarrhea and edema disease in pigs, from acute mastitis in dairy cattle, from urinary tract infections in dogs and cats, and from septicemia in laying hens collected in Switzerland between 1999 and 2001. Among the 16 antimicrobial agents tested, resistance was most frequent for sulfonamides, tetracycline, and streptomycin. Isolates from swine presented significantly more resistance than those from the other animal species. The distribution of the resistance determinants for sulfonamides, tetracycline, and streptomycin was assessed by hybridization and PCR in resistant isolates. Significant differences in the distribution of resistance determinants for tetracycline (tetA, tetB) and sulfonamides (sulII) were observed between the isolates from swine and those from the other species. Resistance to sulfonamides could not be explained by known resistance mechanisms in more than a quarter of the sulfonamide-resistant and sulfonamide-intermediate isolates from swine, dogs and cats. This finding suggests that one or several new resistance mechanisms for sulfonamides may be widespread among E. coli isolates from these animal species. The integrase gene (intI) from class I integrons was detected in a large proportion of resistant isolates in association with the sulI and aadA genes, thus demonstrating the importance of integrons in the epidemiology of resistance in clinical E. coli isolates from animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A collection of 77 Staphylococcus intermedius isolates from dogs and cats in Switzerland was examined for resistance to erythromycin. Resistance profiles for 14 additional antibiotics were compared between erythromycin-resistant and susceptible isolates. A resistance prevalence of 27% for erythromycin was observed in the population under study. Complete correlation between resistance to erythromycin, and to spiramycin, streptomycin, and neomycin was observed. The erythromycin-resistant isolates all had a reduced susceptibility to clindamycin when compared to the erythromycin-susceptible isolates. Both constitutive and inducible resistance phenotypes were observed for clindamycin. Ribotyping showed that macrolide-aminoglycoside resistance was randomly distributed among unrelated strains. This suggests that this particular resistance profile is not related to a single bacterial clone but to the horizontal transfer of resistance gene clusters in S. intermedius populations. The erythromycin-resistant isolates were all carrying erm(B), but not erm(A), erm(C), or msr(A). The erm(B) gene was physically linked to Tn5405-like elements known as resistance determinants for streptomycin, streptothricin, neomycin and kanamycin. Analysis of the region flanking erm(B) showed the presence of two different groups of erm(B)-Tn5405-like elements in the S. intermedius population examined and of elements found in Gram-positive species other than staphylococci. This strongly suggests that erm(B) or the whole erm(B)-Tn5405-like elements in S. intermedius originate from other bacterial species, possibly from enterococci.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Campylobacteriosis is the most frequent zoonosis in developed countries and various domestic animals can function as reservoir for the main pathogens Campylobacter jejuni and Campylobacter coli. In the present study we compared population structures of 730 C. jejuni and C. coli from human cases, 610 chicken, 159 dog, 360 pig and 23 cattle isolates collected between 2001 and 2012 in Switzerland. All isolates had been typed with multi locus sequence typing (MLST) and flaB-typing and their genotypic resistance to quinolones was determined. We used complementary approaches by testing for differences between isolates from different hosts with the proportion similarity as well as the fixation index and by attributing the source of the human isolates with Bayesian assignment using the software STRUCTURE. Analyses were done with MLST and flaB data in parallel and both typing methods were tested for associations of genotypes with quinolone resistance. Results obtained with MLST and flaB data corresponded remarkably well, both indicating chickens as the main source for human infection for both Campylobacter species. Based on MLST, 70.9% of the human cases were attributed to chickens, 19.3% to cattle, 8.6% to dogs and 1.2% to pigs. Furthermore we found a host independent association between sequence type (ST) and quinolone resistance. The most notable were ST-45, all isolates of which were susceptible, while for ST-464 all were resistant.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the past 2 decades, we have observed a rapid increase of infections due to multidrug-resistant Enterobacteriaceae. Regrettably, these isolates possess genes encoding for extended-spectrum β-lactamases (e.g., blaCTX-M, blaTEM, blaSHV) or plasmid-mediated AmpCs (e.g., blaCMY) that confer resistance to last-generation cephalosporins. Furthermore, other resistance traits against quinolones (e.g., mutations in gyrA and parC, qnr elements) and aminoglycosides (e.g., aminoglycosides modifying enzymes and 16S rRNA methylases) are also frequently co-associated. Even more concerning is the rapid increase of Enterobacteriaceae carrying genes conferring resistance to carbapenems (e.g., blaKPC, blaNDM). Therefore, the spread of these pathogens puts in peril our antibiotic options. Unfortunately, standard microbiological procedures require several days to isolate the responsible pathogen and to provide correct antimicrobial susceptibility test results. This delay impacts the rapid implementation of adequate antimicrobial treatment and infection control countermeasures. Thus, there is emerging interest in the early and more sensitive detection of resistance mechanisms. Modern non-phenotypic tests are promising in this respect, and hence, can influence both clinical outcome and healthcare costs. In this review, we present a summary of the most advanced methods (e.g., next-generation DNA sequencing, multiplex PCRs, real-time PCRs, microarrays, MALDI-TOF MS, and PCR/ESI MS) presently available for the rapid detection of antibiotic resistance genes in Enterobacteriaceae. Taking into account speed, manageability, accuracy, versatility, and costs, the possible settings of application (research, clinic, and epidemiology) of these methods and their superiority against standard phenotypic methods are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multidrug resistance protein 4 (MRP4) is a transmembrane transport protein found in many cell types and is involved in substrate-specific transport of endogenous and exogenous substrates. Recently, it has shown to be expressed in prostate cancer cell lines and to be among the most commonly upregulated transcripts in prostate cancer, although a comprehensive expression analysis is lacking so far. We aimed to investigate its expression by immunohistochemistry in a larger cohort of neoplastic and nonneoplastic prostate tissues (n = 441) and to correlate its expression with clinicopathological parameters including PSA-free survival times and molecular correlates of androgen signaling (androgen receptor (AR), prostate-specific antigen (PSA), and forkhead box A (FoxA)). MRP4 is widely expressed in benign and neoplastic prostate epithelia, but its expression gradually decreases during tumor progression towards castrate-resistant disease. Concordantly, it correlated with conventional prognosticators of disease progression and-within the group of androgen-dependent tumors-with AR and FoxA expression. Moreover, lower levels of MRP4 expression were associated with shorter PSA relapse-free survival times in the androgen-dependent group. In benign tissues, we found zone-dependent differences of MRP4 expression, with the highest levels in the peripheral and central zones. Although MRP4 is known to be regulated in prostate cancer, this study is the first to demonstrate a gradual downregulation of MRP4 protein during malignant tumor progression and a prognostic value of this loss of expression.