46 resultados para let-7 microrna family
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Background The identification of additional prognostic markers to improve risk stratification and to avoid overtreatment is one of the most urgent clinical needs in prostate cancer (PCa). MicroRNAs, being important regulators of gene expression, are promising biomarkers in various cancer entities, though the impact as prognostic predictors in PCa is poorly understood. The aim of this study was to identify specific miRNAs as potential prognostic markers in high-risk PCa and to validate their clinical impact. Methodology and Principal Findings We performed miRNA-microarray analysis in a high-risk PCa study group selected by their clinical outcome (clinical progression free survival (CPFS) vs. clinical failure (CF)). We identified seven candidate miRNAs (let-7a/b/c, miR-515-3p/5p, -181b, -146b, and -361) that showed differential expression between both groups. Further qRT-PCR analysis revealed down-regulation of members of the let-7 family in the majority of a large, well-characterized high-risk PCa cohort (n = 98). Expression of let-7a/b/and -c was correlated to clinical outcome parameters of this group. While let-7a showed no association or correlation with clinical relevant data, let-7b and let-7c were associated with CF in PCa patients and functioned partially as independent prognostic marker. Validation of the data using an independent high-risk study cohort revealed that let-7b, but not let-7c, has impact as an independent prognostic marker for BCR and CF. Furthermore, we identified HMGA1, a non-histone protein, as a new target of let-7b and found correlation of let-7b down-regulation with HMGA1 over-expression in primary PCa samples. Conclusion Our findings define a distinct miRNA expression profile in PCa cases with early CF and identified let-7b as prognostic biomarker in high-risk PCa. This study highlights the importance of let-7b as tumor suppressor miRNA in high-risk PCa and presents a basis to improve individual therapy for high-risk PCa patients.
Resumo:
Dysfunction and loss of neurons are the major characteristics of CNS disorders that include stroke, multiple sclerosis, and Alzheimer's disease. Activation of the Toll-like receptor 7 by extracellular microRNA let-7, a highly expressed microRNA in the CNS, induces neuronal cell death. Let-7 released from injured neurons and immune cells acts on neighboring cells, exacerbating CNS damage. Here we show that a synthetic peptide analogous to the mammalian PreImplantation factor (PIF) secreted by developing embryos and which is present in the maternal circulation during pregnancy inhibits the biogenesis of let-7 in both neuronal and immune cells of the mouse. The synthetic peptide, sPIF, destabilizes KH-type splicing regulatory protein (KSRP), a key microRNA-processing protein, in a Toll-like receptor 4 (TLR4)-dependent manner, leading to decreased production of let-7. Furthermore, s.c. administration of sPIF into neonatal rats following hypoxic-ischemic brain injury robustly rescued cortical volume and number of neurons and decreased the detrimental glial response, as is consistent with diminished levels of KSRP and let-7 in sPIF-treated brains. Our results reveal a previously unexpected mechanism of action of PIF and underscore the potential clinical utility of sPIF in treating hypoxic-ischemic brain damage. The newly identified PIF/TLR4/KSRP/let-7 regulatory axis also may operate during embryo implantation and development.
Resumo:
The H19 lncRNA has been implicated in development and growth control and is associated with human genetic disorders and cancer. Acting as a molecular sponge, H19 inhibits microRNA (miRNA) let-7. Here we report that H19 is significantly decreased in muscle of human subjects with type-2 diabetes and insulin resistant rodents. This decrease leads to increased bioavailability of let-7, causing diminished expression of let-7 targets, which is recapitulated in vitro where H19 depletion results in impaired insulin signaling and decreased glucose uptake. Furthermore, acute hyperinsulinemia downregulates H19, a phenomenon that occurs through PI3K/AKT-dependent phosphorylation of the miRNA processing factor KSRP, which promotes biogenesis of let-7 and its mediated H19 destabilization. Our results reveal a previously undescribed double-negative feedback loop between sponge lncRNA and target miRNA that contributes to glucose regulation in muscle cells.
Resumo:
Embryonic-maternal interaction from the earliest stages of gestation has a key, sustained role in neurologic development, persisting into adulthood. Early adverse events may be detrimental in adulthood. Protective factors present during gestation could significantly impact post-natal therapy. The role of PreImplantation Factor (PIF) within this context is herein examined. Secreted by viable early embryos, PIF establishes effective embryonic-maternal communication and exerts essential trophic and protective roles by reducing oxidative stress and protein misfolding and by blunting the nocive let-7 microRNA related pathway. PIF's effects on systemic immunity lead to comprehensive immune modulation, not immune suppression. We examine PIF's role in protecting embryos from adverse maternal environment, which can lead to neurological disorders that may only manifest post-nataly: Synthetic PIF successfully translates endogenous PIF features in both pregnant and non-pregnant clinically relevant models. Specifically PIF has neuroprotective effects in neonatal prematurity. In adult relapsing-remitting neuroinflammation, PIF reverses advanced paralysis while promoting neurogenesis. PIF reversed Mycobacterium smegmatis induced brain infection. In graft-vs.-host disease, PIF reduced skin ulceration, liver inflammation and colon ulceration while maintaining beneficial anti-cancer, graft-vs.-leukemia effect. Clinical-grade PIF has high-safety profile even at supraphysiological doses. The FDA awarded Fast-Track designation, and university-sponsored clinical trials for autoimmune disorder are ongoing. Altogether, PIF properties point to its determining regulatory role in immunity, inflammation and transplant acceptance. Specific plans for using PIF for the treatment of complex neurological disorders (ie. traumatic brain injury, progressive paralysis), including neuroprotection from newborn to adult, are presented.
Resumo:
A synthetic peptide (sPIF) analogous to the mammalian embryo-derived PreImplantation Factor (PIF) enables neuroprotection in rodent models of experimental autoimmune encephalomyelitis and perinatal brain injury. The protective effects have been attributed, in part, to sPIF's ability to inhibit the biogenesis of microRNA let-7, which is released from injured cells during central nervous system (CNS) damage and induces neuronal death. Here, we uncover another novel mechanism of sPIF-mediated neuroprotection. Using a clinically relevant rat newborn brain injury model, we demonstrate that sPIF, when subcutaneously administrated, is able to reduce cell death, reverse neuronal loss and restore proper cortical architecture. We show, both in vivo and in vitro, that sPIF activates cyclic AMP dependent protein kinase (PKA) and calcium-dependent protein kinase (PKC) signaling, leading to increased phosphorylation of major neuroprotective substrates GAP-43, BAD and CREB. Phosphorylated CREB in turn facilitates expression of Gap43, Bdnf and Bcl2 known to have important roles in regulating neuronal growth, survival and remodeling. As is the case in sPIF-mediated let-7 repression, we provide evidence that sPIF-mediated PKA/PKC activation is dependent on TLR4 expression. Thus, we propose that sPIF imparts neuroprotection via multiple mechanisms at multiple levels downstream of TLR4. Given the recent FDA fast-track approval of sPIF for clinical trials, its potential clinical application for treating other CNS diseases can be envisioned.
Resumo:
Endometriosis affects approximately 15% of reproductive aged women and is associated with chronic pelvic pain and infertility. However, the molecular mechanisms by which endometriosis impacts fertility are poorly understood. The developmentally regulated, imprinted H19 long noncoding RNA (lncRNA) functions to reduce the bioavailability of microRNA let-7 by acting as a molecular sponge. Here we report that H19 expression is significantly decreased in the eutopic endometrium of women with endometriosis as compared to normal controls. We show that decreased H19 increases let-7 activity, which in turn inhibits Igf1r expression at the post-transcriptional level, thereby contributing to reduced proliferation of endometrial stromal cells. We propose that perturbation of this newly identified H19/Let-7/IGF1R regulatory pathway may contribute to impaired endometrial preparation and receptivity for pregnancy in women with endometriosis. Our finding represents the first example of a lncRNA-based mechanism in endometriosis and its associated infertility, thus holding potential in the development of novel therapeutics for women with endometriosis and infertility.
Resumo:
TCF7L2 is a type 2 diabetes susceptibility gene and downstream effector of canonical wingless-type MMTV integration site family (WNT) signalling. However, it is unknown whether this pathway is active in adult pancreatic islets in vivo, and whether it is regulated in obesity.
Resumo:
The eukaryotic cell membrane possesses numerous complex functions, which are essential for life. At this, the composition and the structure of the lipid bilayer are of particular importance. Polyunsaturated fatty acids may modulate the physical properties of biological membranes via alteration of membrane lipid composition affecting numerous physiological processes, e.g. in the immune system. In this systematic study we present fatty acid and peptide profiles of cell membrane and membrane rafts of murine macrophages that have been supplemented with saturated fatty acids as well as PUFAs from the n-3, the n-6 and the n-9 family. Using fatty acid composition analysis and mass spectrometry-based peptidome profiling we found that PUFAs from both the n-3 and the n-6 family have an impact on lipid and protein composition of plasma membrane and membrane rafts in a similar manner. In addition, we found a relation between the number of bis-allyl-methylene positions of the PUFA added and the unsaturation index of plasma membrane as well as membrane rafts of supplemented cells. With regard to the proposed significance of lipid microdomains for disease development and treatment our study will help to achieve a targeted dietary modulation of immune cell lipid bilayers.
Resumo:
MicroRNAs are small, noncoding RNAs that suppress gene expression by binding to the 3' untranslated region (UTR) and thereby repress translation or decrease messenger RNA stability. Inhibitor of differentiation 1 (ID1) is a putative stem-cell gene involved in invasion and angiogenesis. We previously showed that ID1 is regulated by Src kinases, overexpressed in human lung adenocarcinoma, and targeted by Src-dependent microRNAs. The current study focused on the association between miR-381 and ID1 in lung adenocarcinoma.
Resumo:
We report a detailed physical analysis on a family of isolated, antiferro-magnetically (AF) coupled, chromium(III) finite chains, of general formula (Cr(RCO(2))(2)F)(n) where the chain length n = 6 or 7. Additionally, the chains are capped with a selection of possible terminating ligands, including hfac (= 1,1,1,5,5,5-hexafluoropentane-2,4-dionate(1-)), acac (= pentane-2,4-dionate(1-)) or (F)(3). Measurements by inelastic neutron scattering (INS), magnetometery and electron paramagnetic resonance (EPR) spectroscopy have been used to study how the electronic properties are affected by n and capping ligand type. These comparisons allowed the subtle electronic effects the choice of capping ligand makes for odd member spin 3/2 ground state and even membered spin 0 ground state chains to be investigated. For this investigation full characterisation of physical properties have been performed with spin Hamiltonian parameterisation, including the determination of Heisenberg exchange coupling constants and single ion axial and rhombic anisotropy. We reveal how the quantum spin energy levels of odd or even membered chains can be modified by the type of capping ligand terminating the chain. Choice of capping ligands enables Cr-Cr exchange coupling to be adjusted by 0, 4 or 24%, relative to Cr-Cr exchange coupling within the body of the chain, by the substitution of hfac, acac or (F)(3) capping ligands to the ends of the chain, respectively. The manipulation of quantum spin levels via ligands which play no role in super-exchange, is of general interest to the practise of spin Hamilton modelling, where such second order effects are generally not considered of relevance to magnetic properties.
Resumo:
Objective:The most difficult thyroid tumors to be diagnosed by cytology and histology are conventional follicular carcinomas (cFTCs) and oncocytic follicular carcinomas (oFTCs). Several microRNAs (miRNAs) have been previously found to be consistently deregulated in papillary thyroid carcinomas; however, very limited information is available for cFTC and oFTC. The aim of this study was to explore miRNA deregulation and find candidate miRNA markers for follicular carcinomas that can be used diagnostically.Design:Thirty-eight follicular thyroid carcinomas (21 cFTCs, 17 oFTCs) and 10 normal thyroid tissue samples were studied for expression of 381 miRNAs using human microarray assays. Expression of deregulated miRNAs was confirmed by individual RT-PCR assays in all samples. In addition, 11 follicular adenomas, two hyperplastic nodules (HNs), and 19 fine-needle aspiration samples were studied for expression of novel miRNA markers detected in this study.Results:The unsupervised hierarchical clustering analysis demonstrated individual clusters for cFTC and oFTC, indicating the difference in miRNA expression between these tumor types. Both cFTCs and oFTCs showed an up-regulation of miR-182/-183/-221/-222/-125a-3p and a down-regulation of miR-542-5p/-574-3p/-455/-199a. Novel miRNA (miR-885-5p) was found to be strongly up-regulated (>40-fold) in oFTCs but not in cFTCs, follicular adenomas, and HNs. The classification and regression tree algorithm applied to fine-needle aspiration samples demonstrated that three dysregulated miRNAs (miR-885-5p/-221/-574-3p) allowed distinguishing follicular thyroid carcinomas from benign HNs with high accuracy.Conclusions:In this study we demonstrate that different histopathological types of follicular thyroid carcinomas have distinct miRNA expression profiles. MiR-885-5p is highly up-regulated in oncocytic follicular carcinomas and may serve as a diagnostic marker for these tumors. A small set of deregulated miRNAs allows for an accurate discrimination between follicular carcinomas and hyperplastic nodules and can be used diagnostically in fine-needle aspiration biopsies.
Resumo:
REASONS FOR PERFORMING STUDY: Exertional rhabdomyolysis (ER) and its familial basis in Warmblood horses is incompletely understood. OBJECTIVES: To describe the case details, clinical signs and management of ER-affected Warmblood horses from a family with a high prevalence of ER, to determine if histopathological signs of polysaccharide storage myopathy (PSSM) and the glycogen synthase (GYS1) mutation are associated with ER in this family, and to investigate potential risk factors for development of ER. METHODS: A family consisting of a sire with ER and 71 of his descendants was investigated. History of episodes of ER, husbandry, feeding and use was assessed by interviewing horse owners using a standardised questionnaire. All horses were genotyped for GYS1. In 10 ER-affected horses, muscle histopathology was evaluated. RESULTS: Signs of ER were reported in 39% of horses and 51% of the entire family possessed the GYS1 mutation. Horses possessing the GYS1 mutation had a 7.1-times increased risk for developing ER compared to those with the normal genotype (95% confidence interval [CI] 2.37-21.23, P = 0.0005). All muscle samples from horses in the family with ER showed polysaccharide accumulation typical for PSSM, amylase-resistant in 9/10 cases. There was evidence (odds ratio 5.6, CI 1.00-31.32, P = 0.05) that fat or oil feeding improved clinical signs of ER. No other effects of environmental factors associated with clinical signs of ER were identified. CONCLUSION AND POTENTIAL RELEVANCE: PSSM associated with the GYS1 mutation is one identifiable cause of ER in Warmblood horses. Signs of ER are not always manifest in GYS1 positive horses and there are also other causes for ER in Warmblood horses. Breeding animals with the GYS1 mutation results in a high prevalence of ER due to its dominant mode of inheritance.
Increased parasite resistance and recurrent airway obstruction in horses of a high-prevalence family
Resumo:
BACKGROUND: Equine recurrent airway obstruction (RAO) shares many characteristics with human asthma. In humans, an inverse relationship between susceptibility to asthma and resistance to parasites is suspected. HYPOTHESIS/OBJECTIVES: Members of a high-incidence RAO half-sibling family (F) shed fewer strongylid eggs compared with RAO-unaffected pasture mates (PM) and that RAO-affected horses shed fewer eggs than RAO-unaffected half-siblings. ANIMALS: Seventy-three F and 73 unrelated, age matched PM. METHODS: Cases and controls kept under the same management and deworming regime were examined. Each individual was classified as RAO affected or RAO unaffected and fecal samples were collected before and 1-3 weeks and 3 months after deworming. Samples were analyzed by combined sedimentation-flotation and modified McMaster methods and classified into 3 categories of 0 eggs per gram of feces (EpG), 1-100 EpG, and > 100 EpG, respectively. RESULTS: PM compared with RAO-affected F had a 16.7 (95% confidence interval [CI]: 2.0-136.3) times higher risk for shedding > 100 EpG compared with 0 EpG and a 5.3 (95% CI: 1.0-27.4) times higher risk for shedding > 100 EpG compared with 0 EpG. There was no significant effect when RAO-unaffected F were compared with their PM. RAO-unaffected compared with RAO-affected offspring had a 5.8 (95% CI: 0.0-1.0) times higher risk for shedding 1-100 EpG. Age, sex, breed, and sharing pastures with other species had no significant confounding effects. CONCLUSION AND CLINICAL IMPORTANCE: RAO is associated with resistance against strongylid parasites in a high-prevalence family.