190 resultados para left ventricular function
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
With water immersion, gravity is partly eliminated, and the water exerts a pressure on the body surface. Consequently there is a blood volume shift from the periphery to the central circulation, resulting in marked volume loading of the thorax and heart. This paper presents a selection of published literature on water immersion, balneotherapy, aqua exercises, and swimming, in patients with left ventricular dysfunction (LVD) and/or stable chronic heart failure (CHF). Based on exploratory studies, central hemodynamic and neurohumoral responses of aquatic therapies will be illustrated. Major findings are: 1. In LVD and CHF, a positive effect of therapeutic warm-water tub bathing has been observed, which is assumed to be from afterload reduction due to peripheral vasodilatation caused by the warm water. 2. In coronary patients with LVD, at low-level water cycling the heart is working more efficiently than at lowlevel cycling outside of water. 3. In patients with previous extensive myocardial infarction, upright immersion to the neck resulted in temporary pathological increases in mean pulmonary artery pressure (mPAP) and mean pulmonary capillary pressures (mPCP). 4. Additionally, during slow swimming (20-25m/min) the mPAP and/or PCP were higher than during supine cycling outside water at a 100W load. 5. In CHF patients, neck- deep immersion resulted in a decrease or no change in stroke volume. 6. Although patients are hemodynamically compromised, they usually maintain a feeling of well-being during aquatic therapy. Based on these findings, clinical indications for aquatic therapies are proposed and ideas are presented to provoke further research.
Resumo:
BACKGROUND Intracoronary administration of autologous bone marrow-derived mononuclear cells (BM-MNC) may improve remodeling of the left ventricle (LV) after acute myocardial infarction. The optimal time point of administration of BM-MNC is still uncertain and has rarely been addressed prospectively in randomized clinical trials. METHODS AND RESULTS In a multicenter study, we randomized 200 patients with large, successfully reperfused ST-segment elevation myocardial infarction in a 1:1:1 pattern into an open-labeled control and 2 BM-MNC treatment groups. In the BM-MNC groups, cells were administered either early (i.e., 5 to 7 days) or late (i.e., 3 to 4 weeks) after acute myocardial infarction. Cardiac magnetic resonance imaging was performed at baseline and after 4 months. The primary end point was the change from baseline to 4 months in global LV ejection fraction between the 2 treatment groups and the control group. The absolute change in LV ejection fraction from baseline to 4 months was -0.4±8.8% (mean±SD; P=0.74 versus baseline) in the control group, 1.8±8.4% (P=0.12 versus baseline) in the early group, and 0.8±7.6% (P=0.45 versus baseline) in the late group. The treatment effect of BM-MNC as estimated by ANCOVA was 1.25 (95% confidence interval, -1.83 to 4.32; P=0.42) for the early therapy group and 0.55 (95% confidence interval, -2.61 to 3.71; P=0.73) for the late therapy group. CONCLUSIONS Among patients with ST-segment elevation myocardial infarction and LV dysfunction after successful reperfusion, intracoronary infusion of BM-MNC at either 5 to 7 days or 3 to 4 weeks after acute myocardial infarction did not improve LV function at 4-month follow-up.
Resumo:
Many of the clinical manifestations of hyperthyroidism are due to the ability of thyroid hormones to alter myocardial contractility and cardiovascular hemodynamics, leading to cardiovascular impairment. In contrast, recent studies highlight also the potential beneficial effects of thyroid hormone administration for clinical or preclinical treatment of different diseases such as atherosclerosis, obesity and diabetes or as a new therapeutic approach in demyelinating disorders. In these contexts and in the view of developing thyroid hormone-based therapeutic strategies, it is, however, important to analyze undesirable secondary effects on the heart. Animal models of experimentally induced hyperthyroidism therefore represent important tools for investigating and monitoring changes of cardiac function. In our present study we use high-field cardiac MRI to monitor and follow-up longitudinally the effects of prolonged thyroid hormone (triiodothyronine) administration focusing on murine left ventricular function. Using a 9.4 T small horizontal bore animal scanner, cinematographic MRI was used to analyze changes in ejection fraction, wall thickening, systolic index and fractional shortening. Cardiac MRI investigations were performed after sustained cycles of triiodothyronine administration and treatment arrest in adolescent (8 week old) and adult (24 week old) female C57Bl/6 N mice. Triiodothyronine supplementation of 3 weeks led to an impairment of cardiac performance with a decline in ejection fraction, wall thickening, systolic index and fractional shortening in both age groups but with a higher extent in the group of adolescent mice. However, after a hormonal treatment cessation of 3 weeks, only young mice are able to partly restore cardiac performance in contrast to adult mice lacking this recovery potential and therefore indicating a presence of chronically developed heart pathology.
Resumo:
Introduction Reduced left ventricular function in patients with severe symptomatic valvular aortic stenosis is associated with impaired clinical outcome in patients undergoing surgical aortic valve replacement (SAVR). Transcatheter Aortic Valve Implantation (TAVI) has been shown non-inferior to SAVR in high-risk patients with respect to mortality and may result in faster left ventricular recovery. Methods We investigated clinical outcomes of high-risk patients with severe aortic stenosis undergoing medical treatment (n = 71) or TAVI (n = 256) stratified by left ventricular ejection fraction (LVEF) in a prospective single center registry. Results Twenty-five patients (35%) among the medical cohort were found to have an LVEF≤30% (mean 26.7±4.1%) and 37 patients (14%) among the TAVI patients (mean 25.2±4.4%). Estimated peri-interventional risk as assessed by logistic EuroSCORE was significantly higher in patients with severely impaired LVEF as compared to patients with LVEF>30% (medical/TAVI 38.5±13.8%/40.6±16.4% versus medical/TAVI 22.5±10.8%/22.1±12.8%, p <0.001). In patients undergoing TAVI, there was no significant difference in the combined endpoint of death, myocardial infarction, major stroke, life-threatening bleeding, major access-site complications, valvular re-intervention, or renal failure at 30 days between the two groups (21.0% versus 27.0%, p = 0.40). After TAVI, patients with LVEF≤30% experienced a rapid improvement in LVEF (from 25±4% to 34±10% at discharge, p = 0.002) associated with improved NYHA functional class at 30 days (decrease ≥1 NYHA class in 95%). During long-term follow-up no difference in survival was observed in patients undergoing TAVI irrespective of baseline LVEF (p = 0.29), whereas there was a significantly higher mortality in medically treated patients with severely reduced LVEF (log rank p = 0.001). Conclusion TAVI in patients with severely reduced left ventricular function may be performed safely and is associated with rapid recovery of systolic left ventricular function and heart failure symptoms.
Resumo:
Temporary percutaneous left ventricular assist devices (TPLVAD) can be inserted and removed in awake patients. They substitute left ventricular function for a period of up to a few weeks and provide an excellent backup and bridge to recovery or decision.
Resumo:
Recent data have suggested a relation among long-term endurance sport practice, left atrial remodeling, and atrial fibrillation. We investigated the influence of an increased vagal tone, represented by the early repolarization (ER) pattern, on diastolic function and left atrial size in professional soccer players. Fifty-four consecutive athletes underwent electrocardiography, echocardiography, and exercise testing as part of their preparticipation screening. Athletes were divided into 2 groups according to presence or absence of an ER pattern, defined as a ST-segment elevation at the J-point (STE) > or =0.1 mm in 2 leads. For linear comparisons average STE was calculated. Mean age was 24 +/- 4 years. Twenty-five athletes (46%) showed an ER pattern. Athletes with an ER pattern had a significant lower heart rate (54 +/- 9 vs 62 +/- 11 beats/min, p = 0.024), an increased E/e' ratio (6.1 +/- 1.2 vs 5.1 +/- 1.0, p = 0.002), and larger volumes of the left atrium (25.6 +/- 7.3 vs 21.8 +/- 5.0 ml/m(2), p = 0.031) compared to athletes without an ER pattern. There were no significant differences concerning maximum workload, left ventricular dimensions, and systolic function. Univariate regression analysis revealed significant correlations among age, STE, and left atrial volume. In a stepwise multivariate regression analysis age, STE and e' contributed independently to left atrial size (r = 0.659, p <0.001). In conclusion, athletes with an ER pattern had an increased E/e' ratio, reflecting a higher left atrial filling pressure, contributing to left atrial remodeling over time.
Resumo:
PURPOSE OF REVIEW: This review will discuss the rationale and clinical utility of percutaneous left ventricular assist devices in the management of patients with cardiogenic shock. RECENT FINDINGS: Left ventricular assist devices maintain partial or total circulatory support in case of severe left ventricular failure. Currently, two percutaneous left ventricular assist devices are available for clinical use: the TandemHeart and the Impella Recover LP system. Compared with the intraaortic balloon pump, the TandemHeart has been shown to significantly reduce preload and to augment cardiac output. In a randomized comparison between the TandemHeart and intraaortic balloon pump support in patients with cardiogenic shock, the improved cardiac index afforded by the left ventricular assist device resulted in a more rapid decrease in serum lactate and improved renal function. There were, however, no significant differences with respect to 30-day mortality, and complications including limb ischemia and severe bleeding were more frequent with left ventricular assist devices than intraaortic balloon pump support. SUMMARY: The advent of percutaneous left ventricular assist devices constitutes an important advance in the management of patients with severe cardiogenic shock and may serve as bridge to recovery or heart transplantation in carefully selected patients. While improvement of hemodynamic parameters appears promising, it remains to be determined whether this benefit translates into improved clinical outcome.
Resumo:
Left ventricular assist devices were developed to support the function of a failing left ventricle. Owing to recent technological improvements, ventricular assist devices can be placed by percutaneous implantation techniques, which offer the advantage of fast implantation in the setting of acute left ventricular failure. This article reviews the growing evidence supporting the clinical use of left ventricular assist devices. Specifically, we discuss the use of left ventricular assist devices in patients with cardiogenic shock, in patients with acute ST-elevation myocardial infarction without shock, and during high-risk percutaneous coronary interventions.
Resumo:
AIMS The aim of our study in patients with coronary artery disease (CAD) and present, or absent, myocardial ischaemia during coronary occlusion was to test whether (i) left ventricular (LV) filling pressure is influenced by the collateral circulation and, on the other hand, that (ii) its resistance to flow is directly associated with LV filling pressure. METHODS AND RESULTS In 50 patients with CAD, the following parameters were obtained before and during a 60 s balloon occlusion: LV, aortic (Pao) and coronary pressure (Poccl), flow velocity (Voccl), central venous pressure (CVP), and coronary flow velocity after coronary angioplasty (V(Ø-occl)). The following variables were determined and analysed at 10 s intervals during occlusion, and at 60 s of occlusion: LV end-diastolic pressure (LVEDP), velocity-derived (CFIv) and pressure-derived collateral flow index (CFIp), coronary collateral (Rcoll), and peripheral resistance index to flow (Rperiph). Patients with ECG signs of ischaemia during coronary occlusion (insufficient collaterals, n = 33) had higher values of LVEDP over the entire course of occlusion than those without ECG signs of ischaemia during occlusion (sufficient collaterals, n = 17). Despite no ischaemia in the latter, there was an increase in LVEDP from 20 to 60 s of occlusion. In patients with insufficient collaterals, CFIv decreased and CFIp increased during occlusion. Beyond an occlusive LVEDP > 27 mmHg, Rcoll and Rperiph increased as a function of LVEDP. CONCLUSION Recruitable collaterals are reciprocally tied to LV filling pressure during occlusion. If poorly developed, they affect it via myocardial ischaemia; if well grown, LV filling pressure still increases gradually during occlusion despite the absence of ischaemia indicating transmission of collateral perfusion pressure to the LV. With low, but not high, collateral flow, resistance to collateral as well as coronary peripheral flow is related to LV filling pressure in the high range.
Resumo:
BACKGROUND Ventricular torsion is an important component of cardiac function. The effect of septic shock on left ventricular torsion is not known. Because torsion is influenced by changes in preload, we compared the effect of fluid loading on left ventricular torsion in septic shock with the response in matched healthy control subjects. METHODS We assessed left ventricular torsion parameters using transthoracic echocardiography in 11 patients during early septic shock and in 11 age- and sex-matched healthy volunteers before and after rapid volume loading with 250 mL of a Ringer's lactate solution. RESULTS Peak torsion and peak apical rotation were reduced in septic shock (10.2 ± 5.2° and 5.6 ± 5.4°) compared with healthy volunteers (16.3 ± 4.5° and 9.6 ± 1.5°; P = 0.009 and P = 0.006 respectively). Basal rotation was delayed and diastolic untwisting velocity reached its maximum later during diastole in septic shock patients than in healthy volunteers (104 ± 16% vs 111 ± 14% and 13 ± 5% vs 21 ± 10%; P = 0.03 and P = 0.034, respectively). Fluid challenge increased peak torsion in both groups (septic shock, 10.2 ± 5.3° vs 12.6 ± 3.9°; healthy volunteers, 16.3 ± 4.5° vs 18.1 ± 6°; P = 0.01). Fluid challenge increased left ventricular stroke volume in septic shock patients (P = 0.003). CONCLUSIONS Compared with healthy volunteers, left ventricular torsion is impaired in septic shock patients. Fluid loading attenuates torsion abnormalities in parallel with increasing stroke volume. Reduced torsional motion might constitute a relevant component of septic cardiomyopathy, a notion that merits further testing in larger populations.
Resumo:
OBJECTIVES Left ventricular assist devices are an important treatment option for patients with heart failure alter the hemodynamics in the heart and great vessels. Because in vivo magnetic resonance studies of patients with ventricular assist devices are not possible, in vitro models represent an important tool to investigate flow alterations caused by these systems. By using an in vitro magnetic resonance-compatible model that mimics physiologic conditions as close as possible, this work investigated the flow characteristics using 4-dimensional flow-sensitive magnetic resonance imaging of a left ventricular assist device with outflow via the right subclavian artery as commonly used in cardiothoracic surgery in the recent past. METHODS An in vitro model was developed consisting of an aorta with its supra-aortic branches connected to a left ventricular assist device simulating the pulsatile flow of the native failing heart. A second left ventricular assist device supplied the aorta with continuous flow via the right subclavian artery. Four-dimensional flow-sensitive magnetic resonance imaging was performed for different flow rates of the left ventricular assist device simulating the native heart and the left ventricular assist device providing the continuous flow. Flow characteristics were qualitatively and quantitatively evaluated in the entire vessel system. RESULTS Flow characteristics inside the aorta and its upper branching vessels revealed that the right subclavian artery and the right carotid artery were solely supported by the continuous-flow left ventricular assist device for all flow rates. The flow rates in the brain-supplying arteries are only marginally affected by different operating conditions. The qualitative analysis revealed only minor effects on the flow characteristics, such as weakly pronounced vortex flow caused by the retrograde flow via the brachiocephalic artery. CONCLUSIONS The results indicate that, despite the massive alterations in natural hemodynamics due to the retrograde flow via the right subclavian and brachiocephalic arteries, there are no drastic consequences on the flow in the brain-feeding arteries and the flow characteristics in the ascending and descending aortas. It may be beneficial to adjust the operating condition of the left ventricular assist device to the residual function of the failing heart.