22 resultados para learning test
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We performed a Rey visual design learning test (RVDLT) in 17 subjects and measured intervoxel coherence (IC) by DTI as an indication of connectivity to investigate if visual memory performance would depend on white matter structure in healthy persons. IC considers the orientation of the adjacent voxels and has a better signal-to-noise ratio than the commonly used fractional anisotropy index. Voxel-based t-test analysis of the IC values was used to identify neighboring voxel clusters with significant differences between 7 low and 10 high test performers. We detected 9 circumscribed significant clusters (p< .01) with lower IC values in low performers than in high performers, with centers of gravity located in left and right superior temporal region, corpus callosum, left superior longitudinal fascicle, and left optic radiation. Using non-parametric correlation analysis, IC and memory performance were significantly correlated in each of the 9 clusters (r< .61 to r< .81; df=15, p< .01 to p< .0001). The findings provide in vivo evidence for the contribution of white matter structure to visual memory in healthy people.
Resumo:
The aim of this study was to investigate the impact of unilateral deep brain stimulation (DBS) of the ventrointermediate (Vim) thalamic nucleus on neuropsychological functioning comparing stimulation-on with stimulation-off conditions. Nine patients [five patients with Parkinson's Disease (PD), two patients with essential tremor (ET) and 2 patients with multiple sclerosis (MS)] underwent comprehensive neuropsychological testing for cognitive functions, including general mental impairment, aphasia, agnosia, executive and constructional abilities, learning, memory, cognitive processing speed and attention as well as depression. The neuropsychological assessments were performed at least 6 months postoperatively (mean 9 months). Testing in the stimulation-on and stimulation-off condition was obtained within a period of 3 to 4 weeks. Unilateral DBS resulted in improvement of tremor in all patients. There were no significant differences between the stimulation-on and the stimulation-off condition with the exception of a decrement of word-recall in the short delay free-recall subtest of the Rey Auditory-Verbal Learning Test (RAVLT). Subgroup analysis indicated that the impairment in word-recall was related to left-sided thalamic stimulation. Our study confirms that chronic unilateral DBS is a safe method with regard to cognitive function. The subtle changes in episodic memory are related to stimulation per se and not to a microthalamotomy effect.
Resumo:
OBJECTIVE: To study the neurocognitive profile and its relationship to prefrontal dysfunction in non-demented Parkinson's disease (PD) with deficient haptic perception. METHODS: Twelve right-handed patients with PD and 12 healthy control subjects underwent thorough neuropsychological testing including Rey complex figure, Rey auditory verbal and figural learning test, figural and verbal fluency, and Stroop test. Test scores reflecting significant differences between patients and healthy subjects were correlated with the individual expression coefficients of one principal component, obtained in a principal component analysis of an oxygen-15-labeled water PET study exploring somatosensory discrimination that differentiated between the two groups and involved prefrontal cortices. RESULTS: We found significantly decreased total scores for the verbal learning trials and verbal delayed free recall in PD patients compared with normal volunteers. Further analysis of these parameters using Spearman's ranking correlation showed a significantly negative correlation of deficient verbal recall with expression coefficients of the principal component whose image showed a subcortical-cortical network, including right dorsolateral-prefrontal cortex, in PD patients. CONCLUSION: PD patients with disrupted right dorsolateral prefrontal cortex function and associated diminished somatosensory discrimination are impaired also in verbal memory functions. A negative correlation between delayed verbal free recall and PET activation in a network including the prefrontal cortices suggests that verbal cues and accordingly declarative memory processes may be operative in PD during activities that demand sustained attention such as somatosensory discrimination. Verbal cues may be compensatory in nature and help to non-specifically enhance focused attention in the presence of a functionally disrupted prefrontal cortex.
Resumo:
Over the last decade, the end-state comfort effect (e.g., Rosenbaum et al., 2006) has received a considerable amount of attention. However, some of the underlying mechanisms are still to be investigated, amongst others, how sequential planning affects end-state comfort and how this effect develops over learning. In a two-step sequencing task, e.g., postural comfort can be planned on the intermediate position (next state) or on the actual end position (final state). It might be hypothesized that, in initial acquisition, next state’s comfort is crucial for action planning but that, in the course of learning, final state’s comfort is taken more and more into account. To test this hypothesis, a variant of Rosenbaum’s vertical stick transportation task was used. Participants (N = 16, right-handed) received extensive practice on a two-step transportation task (10,000 trials over 12 sessions). From the initial position on the middle stair of a staircase in front of the participant, the stick had to be transported either 20 cm upwards and then 40 cm downwards or 20 cm downwards and then 40 cm upwards (N = 8 per subgroup). Participants were supposed to produce fluid movements without changing grasp. In the pre- and posttest, participants were tested on both two-step sequencing tasks as well as on 20 cm single-step upwards and downwards movements (10 trials per condition). For the test trials, grasp height was calculated kinematographically. In the pretest, large end/next/final-state comfort effects for single-step transportation tasks and large next-state comfort effects for sequenced tasks were found. However, no change in grasp height from pre- to posttest could be revealed. Results show that, in vertical stick transportation sequences, the final state is not taken into account when planning grasp height. Instead, action planning seems to be solely based on aspects of the next action goal that is to be reached.
Resumo:
The discovery of binary dendritic events such as local NMDA spikes in dendritic subbranches led to the suggestion that dendritic trees could be computationally equivalent to a 2-layer network of point neurons, with a single output unit represented by the soma, and input units represented by the dendritic branches. Although this interpretation endows a neuron with a high computational power, it is functionally not clear why nature would have preferred the dendritic solution with a single but complex neuron, as opposed to the network solution with many but simple units. We show that the dendritic solution has a distinguished advantage over the network solution when considering different learning tasks. Its key property is that the dendritic branches receive an immediate feedback from the somatic output spike, while in the corresponding network architecture the feedback would require additional backpropagating connections to the input units. Assuming a reinforcement learning scenario we formally derive a learning rule for the synaptic contacts on the individual dendritic trees which depends on the presynaptic activity, the local NMDA spikes, the somatic action potential, and a delayed reinforcement signal. We test the model for two scenarios: the learning of binary classifications and of precise spike timings. We show that the immediate feedback represented by the backpropagating action potential supplies the individual dendritic branches with enough information to efficiently adapt their synapses and to speed up the learning process.
Resumo:
The discovery of binary dendritic events such as local NMDA spikes in dendritic subbranches led to the suggestion that dendritic trees could be computationally equivalent to a 2-layer network of point neurons, with a single output unit represented by the soma, and input units represented by the dendritic branches. Although this interpretation endows a neuron with a high computational power, it is functionally not clear why nature would have preferred the dendritic solution with a single but complex neuron, as opposed to the network solution with many but simple units. We show that the dendritic solution has a distinguished advantage over the network solution when considering different learning tasks. Its key property is that the dendritic branches receive an immediate feedback from the somatic output spike, while in the corresponding network architecture the feedback would require additional backpropagating connections to the input units. Assuming a reinforcement learning scenario we formally derive a learning rule for the synaptic contacts on the individual dendritic trees which depends on the presynaptic activity, the local NMDA spikes, the somatic action potential, and a delayed reinforcement signal. We test the model for two scenarios: the learning of binary classifications and of precise spike timings. We show that the immediate feedback represented by the backpropagating action potential supplies the individual dendritic branches with enough information to efficiently adapt their synapses and to speed up the learning process.
Resumo:
PURPOSE: Understanding the learning styles of individuals may assist in the tailoring of an educational program to optimize learning. General surgery faculty and residents have been characterized previously as having a tendency toward particular learning styles. We seek to understand better the learning styles of general surgery residents and differences that may exist within the population. METHODS: The Kolb Learning Style Inventory was administered yearly to general surgery residents at the University of Cincinnati from 1994 to 2006. This tool allows characterization of learning styles into 4 groups: converging, accommodating, assimilating, and diverging. The converging learning style involves education by actively solving problems. The accommodating learning style uses emotion and interpersonal relationships. The assimilating learning style learns by abstract logic. The diverging learning style learns best by observation. Chi-square analysis and analysis of variance were performed to determine significance. RESULTS: Surveys from 1994 to 2006 (91 residents, 325 responses) were analyzed. The prevalent learning style was converging (185, 57%), followed by assimilating (58, 18%), accommodating (44, 14%), and diverging (38, 12%). At the PGY 1 and 2 levels, male and female residents differed in learning style, with the accommodating learning style being relatively more frequent in women and assimilating learning style more frequent in men (Table 1, p < or = 0.001, chi-square test). Interestingly, learning style did not seem to change with advancing PGY level within the program, which suggests that individual learning styles may be constant throughout residency training. If a resident's learning style changed, it tended to be to converging. In addition, no relation exists between learning style and participation in dedicated basic science training or performance on the ABSIT/SBSE. CONCLUSIONS: Our data suggests that learning style differs between male and female general surgery residents but not with PGY level or ABSIT/SBSE performance. A greater understanding of individual learning styles may allow more refinement and tailoring of surgical programs.
Resumo:
Individual learning is central to the success of the transition phase in software mainte-nance offshoring projects. However, little is known on how learning activities, such as on-the-job training and formal presentations, are effectively combined during the tran-sition phase. In this study, we present and test propositions derived from cognitive load theory. The results of a multiple-case study suggest that learning effectiveness was highest when learning tasks such as authentic maintenance requests were used. Con-sistent with cognitive load theory, learning tasks were most effective when they imposed moderate cognitive load. Our data indicate that cognitive load was influenced by the expertise of the onsite coordinator, by intrinsic task complexity, by the degree of specifi-cation of tasks, and by supportive information. Cultural and semantic distances may in-fluence learning by inhibiting supportive information, specification, and the assignment of learning tasks.
Resumo:
This study aimed to evaluate the effect of an e-learning program on the validity and reproducibility of the International Caries Detection and Assessment System (ICDAS) in detecting occlusal caries. For the study, 170 permanent molars were selected. Four dentists in Switzerland who had no previous contact with ICDAS examined the teeth before and after the e-learning program and scored the sites according to ICDAS. Teeth were histologically prepared and assessed for caries extension. The significance level was set at 0.05. Sensitivity before and after the e-learning program was 0.80 and 0.77 (D1), 0.72 and 0.63 (D2), and 0.74 and 0.67 (D3,4), respectively. Specificity was 0.64 and 0.69 (D1), 0.70 and 0.81 (D2), and 0.81 and 0.87 (D3,4). A McNemar test did not show any difference between the values of sensitivity, specificity, accuracy, and area under the ROC curve (AUC) before and after the e-learning program. The averages of wK values for interexaminer reproducibility were 0.61 (before) and 0.66 (after). Correlation with histology presented wK values of 0.62 (before) and 0.63 (after). A Wilcoxon test showed a statistically significant difference between before and after the e-learning program. In conclusion, even though ICDAS performed well in detecting occlusal caries, the e-learning program did not have any statistically significant effect on its performance by these experienced dentists.
Resumo:
Bilingual education programs implicitly assume that the acquired knowledge is represented in a language-independent way. This assumption, however, stands in strong contrast to research findings showing that information may be represented in a way closely tied to the specific language of instruction and learning. The present study aims to examine whether and to which extent cognitive costs appear during arithmetic learning when language of instruction and language of retrieving differ. Thirty-nine high school students participating in a bilingual education program underwent a four-day training on multiplication and subtraction problems in one language (German or French), followed by a test session in which they had to solve trained as well as untrained problems in both languages. We found that cognitive costs related to language switching appeared for both arithmetic operations. Implications of our findings are discussed with respect to bilingual education as well as to cognitive mechanisms underlying different arithmetic operations.
Resumo:
Contemporary models of self-regulated learning emphasize the role of distal motivational factors for student's achievement, on the one side, and the proximal role of metacognitive monitoring and control for learning and test outcomes, on the other side. In the present study, two larger samples of elementary school children (9- and 11-year-olds) were included and their mastery-oriented motivation, metacognitive monitoring and control skills were integrated into structural equation models testing and comparing the relative impact of these different constituents for self-regulated learning. For one, results indicate that the factorial structure of monitoring, control and mastery motivation was invariant across the two age groups. Of specific interest was the finding that there were age-dependent structural links between monitoring, control, and test performance (closer links in the older compared to the younger children), with high confidence yielding a direct and positive effect on test performance and a direct and negative effect on adequate control behavior in the achievement test. Mastery-oriented motivation was not found to be substantially associated with monitoring (confidence), control (detection and correction of errors), or test performance underlining the importance of proximal, metacognitive factors for test performance in elementary school children.
Resumo:
This multi-phase study examined the influence of retrieval processes on children’s metacognitive processes in relation to and in interaction with achievement level and age. First, N = 150 9/10- and 11/12-year old high and low achievers watched an educational film and predicted their test performance. Children then solved a cloze test regarding the film content including answerable and unanswerable items and gave confidence judgments to every answer. Finally, children withdrew answers that they believed to be incorrect. All children showed adequate metacognitive processes before and during test taking with 11/12- year-olds outperforming 9/10-year-olds when considering characteristics of on-going retrieval processes. As to the influence of achievement level, high compared to low achievers proved to be more accurate in their metacognitive monitoring and controlling. Results suggest that both cognitive resources (operationalized through achievement level) and mnemonic experience (assessed through age) fuel metacognitive development. Nevertheless, when facing higher demands regarding retrieval processes, experience seems to play the more important role.
Resumo:
The present research examined the prediction of school students' grades in an upcoming math test via their minimal grade goals (i.e., the minimum grade in an upcoming test one would be satisfied with). Due to its significance for initiating and maintaining goal-directed behavior, self-control capacity was expected to moderate the relation between students' minimal grade goals and their actual grades. Self-control capacity was defined as the dispositional capacity to override or alter one's dominant response tendencies. Prior to a scheduled math test, 172 vocational track students indicated their minimal grade goal for the test and completed a measure of self-control capacity. The test grade was assessed at a second time of measurement. As expected, minimal grade goals more strongly predicted the actual test grades the higher the students' self-control capacity. Implications can be seen in terms of optimizing the prediction and advancement of academic performance.