11 resultados para latent variables
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Introduction Prospective memory (PM), the ability to remember to perform intended activities in the future (Kliegel & Jäger, 2007), is crucial to succeed in everyday life. PM seems to improve gradually over the childhood years (Zimmermann & Meier, 2006), but yet little is known about PM competences in young school children in general, and even less is known about factors influencing its development. Currently, a number of studies suggest that executive functions (EF) are potentially influencing processes (Ford, Driscoll, Shum & Macaulay, 2012; Mahy & Moses, 2011). Additionally, metacognitive processes (MC: monitoring and control) are assumed to be involved while optimizing one’s performance (Krebs & Roebers, 2010; 2012; Roebers, Schmid, & Roderer, 2009). Yet, the relations between PM, EF and MC remain relatively unspecified. We intend to empirically examine the structural relations between these constructs. Method A cross-sectional study including 119 2nd graders (mage = 95.03, sdage = 4.82) will be presented. Participants (n = 68 girls) completed three EF tasks (stroop, updating, shifting), a computerised event-based PM task and a MC spelling task. The latent variables PM, EF and MC that were represented by manifest variables deriving from the conducted tasks, were interrelated by structural equation modelling. Results Analyses revealed clear associations between the three cognitive constructs PM, EF and MC (rpm-EF = .45, rpm-MC = .23, ref-MC = .20). A three factor model, as opposed to one or two factor models, appeared to fit excellently to the data (chi2(17, 119) = 18.86, p = .34, remsea = .030, cfi = .990, tli = .978). Discussion The results indicate that already in young elementary school children, PM, EF and MC are empirically well distinguishable, but nevertheless substantially interrelated. PM and EF seem to share a substantial amount of variance while for MC, more unique processes may be assumed.
Resumo:
The close association between psychometric intelligence and general discrimination ability (GDA), conceptualized as latent variable derived from performance on different sensory discrimination tasks, is empirically well-established but theoretically widely unclear. The present study contrasted two alternative explanations for this association. The first explanation is based on what Spearman (1904) referred to as a central function underlying this relationship in the sense of the g factor of intelligence and becoming most evident in GDA. In this case, correlations between different aspects of cognitive abilities, such as working memory (WM) capacity, and psychometric intelligence should be mediated by GDA if their correlation is caused by g. Alternatively, the second explanation for the relationship between psychometric intelligence and GDA proceeds from fMRI studies which emphasize the role of WM functioning for sensory discrimination. Given the well-known relationship between WM and psychometric intelligence, the relationship between GDA and psychometric intelligence might be attributed to WM. The present study investigated these two alternative explanations at the level of latent variables. In 197 young adults, a model in which WM mediated the relationship between GDA and psychometric intelligence described the data better than a model in which GDA mediated the relationship between WM and psychometric intelligence. Moreover, GDA failed to explain portions of variance of psychometric intelligence above and beyond WM. These findings clearly support the view that the association between psychometric intelligence and GDA must be understood in terms of WM functioning.
Resumo:
The most influential theoretical account in time psychophysics assumes the existence of a unitary internal clock based on neural counting. The distinct timing hypothesis, on the other hand, suggests an automatic timing mechanism for processing of durations in the sub-second range and a cognitively controlled timing mechanism for processing of durations in the range of seconds. Although several psychophysical approaches can be applied for identifying the internal structure of interval timing in the second and sub-second range, the existing data provide a puzzling picture of rather inconsistent results. In the present chapter, we introduce confirmatory factor analysis (CFA) to further elucidate the internal structure of interval timing performance in the sub-second and second range. More specifically, we investigated whether CFA would rather support the notion of a unitary timing mechanism or of distinct timing mechanisms underlying interval timing in the sub-second and second range, respectively. The assumption of two distinct timing mechanisms which are completely independent of each other was not supported by our data. The model assuming a unitary timing mechanism underlying interval timing in both the sub-second and second range fitted the empirical data much better. Eventually, we also tested a third model assuming two distinct, but functionally related mechanisms. The correlation between the two latent variables representing the hypothesized timing mechanisms was rather high and comparison of fit indices indicated that the assumption of two associated timing mechanisms described the observed data better than only one latent variable. Models are discussed in the light of the existing psychophysical and neurophysiological data.
Resumo:
Numerous studies reported a strong link between working memory capacity (WMC) and fluid intelligence (Gf), although views differ in respect to how close these two constructs are related to each other. In the present study, we used a WMC task with five levels of task demands to assess the relationship between WMC and Gf by means of a new methodological approach referred to as fixed-links modeling. Fixed-links models belong to the family of confirmatory factor analysis (CFA) and are of particular interest for experimental, repeated-measures designs. With this technique, processes systematically varying across task conditions can be disentangled from processes unaffected by the experimental manipulation. Proceeding from the assumption that experimental manipulation in a WMC task leads to increasing demands on WMC, the processes systematically varying across task conditions can be assumed to be WMC-specific. Processes not varying across task conditions, on the other hand, are probably independent of WMC. Fixed-links models allow for representing these two kinds of processes by two independent latent variables. In contrast to traditional CFA where a common latent variable is derived from the different task conditions, fixed-links models facilitate a more precise or purified representation of the WMC-related processes of interest. By using fixed-links modeling to analyze data of 200 participants, we identified a non-experimental latent variable, representing processes that remained constant irrespective of the WMC task conditions, and an experimental latent variable which reflected processes that varied as a function of experimental manipulation. This latter variable represents the increasing demands on WMC and, hence, was considered a purified measure of WMC controlled for the constant processes. Fixed-links modeling showed that both the purified measure of WMC (β = .48) as well as the constant processes involved in the task (β = .45) were related to Gf. Taken together, these two latent variables explained the same portion of variance of Gf as a single latent variable obtained by traditional CFA (β = .65) indicating that traditional CFA causes an overestimation of the effective relationship between WMC and Gf. Thus, fixed-links modeling provides a feasible method for a more valid investigation of the functional relationship between specific constructs.
Resumo:
Recurrent wheezing or asthma is a common problem in children that has increased considerably in prevalence in the past few decades. The causes and underlying mechanisms are poorly understood and it is thought that a numb er of distinct diseases causing similar symptoms are involved. Due to the lack of a biologically founded classification system, children are classified according to their observed disease related features (symptoms, signs, measurements) into phenotypes. The objectives of this PhD project were a) to develop tools for analysing phenotypic variation of a disease, and b) to examine phenotypic variability of wheezing among children by applying these tools to existing epidemiological data. A combination of graphical methods (multivariate co rrespondence analysis) and statistical models (latent variables models) was used. In a first phase, a model for discrete variability (latent class model) was applied to data on symptoms and measurements from an epidemiological study to identify distinct phenotypes of wheezing. In a second phase, the modelling framework was expanded to include continuous variability (e.g. along a severity gradient) and combinations of discrete and continuo us variability (factor models and factor mixture models). The third phase focused on validating the methods using simulation studies. The main body of this thesis consists of 5 articles (3 published, 1 submitted and 1 to be submitted) including applications, methodological contributions and a review. The main findings and contributions were: 1) The application of a latent class model to epidemiological data (symptoms and physiological measurements) yielded plausible pheno types of wheezing with distinguishing characteristics that have previously been used as phenotype defining characteristics. 2) A method was proposed for including responses to conditional questions (e.g. questions on severity or triggers of wheezing are asked only to children with wheeze) in multivariate modelling.ii 3) A panel of clinicians was set up to agree on a plausible model for wheezing diseases. The model can be used to generate datasets for testing the modelling approach. 4) A critical review of methods for defining and validating phenotypes of wheeze in children was conducted. 5) The simulation studies showed that a parsimonious parameterisation of the models is required to identify the true underlying structure of the data. The developed approach can deal with some challenges of real-life cohort data such as variables of mixed mode (continuous and categorical), missing data and conditional questions. If carefully applied, the approach can be used to identify whether the underlying phenotypic variation is discrete (classes), continuous (factors) or a combination of these. These methods could help improve precision of research into causes and mechanisms and contribute to the development of a new classification of wheezing disorders in children and other diseases which are difficult to classify.
Resumo:
Traditionally, researchers have discussed executive function and metacognition independently. However, more recently, theoretical frameworks linking these two groups of higher order cognitive processes have been advanced. In this article, we explore the relationship between executive function and procedural metacognition, and summarize theoretical similarities. From a developmental perspective, the assumed theoretical resemblances seem to be supported, considering development trajectories and their substantial impact on areas that include learning and memory. Moreover, empirical evidence suggests direct relationships on the task level, on the level of latent variables, and in terms of involved brain regions. However, research linking the two concepts directly remains rare. We discuss evidence and developmental mechanisms, and propose ways researchers can investigate links between executive function and procedural metacognition.
Resumo:
The attentional blink (AB) is a fundamental limitation of the ability to select relevant information from irrelevant information. It can be observed with the detection rate in an AB task as well as with the corresponding P300 amplitude of the event-related potential. In previous research, however, correlations between these two levels of observation were weak and rather inconsistent. A possible explanation of this finding might be that multiple processes underlie the AB and, thus, obscure a possible relationship between AB-related detection rate and the corresponding P300 amplitude. The present study investigated this assumption by applying a fixed-links modeling approach to represent behavioral individual differences in the AB as a latent variable. Concurrently, this approach enabled us to control for additional sources of variance in AB performance by deriving two additional latent variables. The correlation between the latent variable reflecting behavioral individual differences in AB magnitude and a corresponding latent variable derived from the P300 amplitude was high (r=.70). Furthermore, this correlation was considerably stronger than the correlations of other behavioral measures of the AB magnitude with their psychophysiological counterparts (all rs<.40). Our findings clearly indicate that the systematic disentangling of various sources of variance by utilizing the fixed-links modeling approach is a promising tool to investigate behavioral individual differences in the AB and possible psychophysiological correlates of these individual differences.
Resumo:
Many studies obtained reliable individual differences in speed of information processing (SIP) as measured by elementary cognitive tasks (ECTs). ECTs usually employ response times (RT) as measure of SIP, but different ECTs target different cognitive processes (e.g., simple or choice reaction, inhibition). Here we used modified versions of the Hick and the Eriksen Flanker task to examine whether these tasks assess dissociable or common aspects of SIP. In both tasks, task complexity was systematically varied across three levels. RT data were collected from 135 participants. Applying fixed-links modeling, RT variance increasing with task complexity was separated from RT variance unchanging across conditions. For each task, these aspects of variance were represented by two independent latent variables. The two latent variables representing RT variance not varying with complexity of the two tasks were virtually identical (r = .83). The latent variables representing increasing complexity in the two tasks were also highly correlated (r = .72) but clearly dissociable. Thus, RT measures contain both task-unspecific, person-related aspects of SIP as well as task-specific aspects indicating the cognitive processes manipulated with the respective task. Separating these aspects of SIP facilitates the interpretation of individual differences in RT.
Resumo:
The Culture Fair Test (CFT) is a psychometric test of fluid intelligence consisting of four subtests; Series, Classification, Matrices, and Topographies. The four subtests are only moderately intercorrelated, doubting the notion that they assess the same construct (i.e., fluid intelligence). As an explanation of these low correlations, we investigated the position effect. This effect is assumed to reflect implicit learning during testing. By applying fixed-links modeling to analyze the CFT data of 206 participants, we identified position effects as latent variables in the subtests; Classification, Matrices, and Topographies. These position effects were disentangled from a second set of latent variables representing fluid intelligence inherent in the four subtests. After this separation of position effect and basic fluid intelligence, the latent variables representing basic fluid intelligence in the subtests Series, Matrices, and Topographies could be combined to one common latent variable which was highly correlated with fluid intelligence derived from the subtest Classification (r=.72). Correlations between the three latent variables representing the position effects in the Classification, Matrices, and Topographies subtests ranged from r=.38 to r=.59. The results indicate that all four CFT subtests measure the same construct (i.e., fluid intelligence) but that the position effect confounds the factorial structure
Resumo:
The position effect describes the influence of just-completed items in a psychological scale on subsequent items. This effect has been repeatedly reported for psychometric reasoning scales and is assumed to reflect implicit learning during testing. One way to identify the position effect is fixed-links modeling. With this approach, two latent variables are derived from the test items. Factor loadings of one latent variable are fixed to 1 for all items to represent ability-related variance. Factor loadings on the second latent variable increase from the first to the last item describing the position effect. Previous studies using fixed-links modeling on the position effect investigated reasoning scales constructed in accordance with classical test theory (e.g., Raven’s Progressive Matrices) but, to the best of our knowledge, no Rasch-scaled tests. These tests, however, meet stronger requirements on item homogeneity. In the present study, therefore, we will analyze data from 239 participants who have completed the Rasch-scaled Viennese Matrices Test (VMT). Applying a fixed-links modeling approach, we will test whether a position effect can be depicted as a latent variable and separated from a latent variable representing basic reasoning ability. The results have implications for the assumption of homogeneity in Rasch-homogeneous tests.
Resumo:
Two factors that have been suggested as key in explaining individual differences in fluid intelligence are working memory and sensory discrimination ability. A latent variable approach was used to explore the relative contributions of these two variables to individual differences in fluid intelligence in middle to late childhood. A sample of 263 children aged 7–12 years was examined. Correlational analyses showed that general discrimination ability (GDA)and working memory (WM) were related to each other and to fluid intelligence. Structural equation modeling showed that within both younger and older age groups and the sample as a whole, the relation between GDA and fluid intelligence could be accounted for by WM. While WM was able to predict variance in fluid intelligence above and beyond GDA, GDA was not able to explain significant amounts of variance in fluid intelligence, either in the whole sample or within the younger or older age group. We concluded that compared to GDA, WM should be considered the better predictor of individual differences in fluid intelligence in childhood. WM and fluid intelligence, while not being separable in middle childhood, develop at different rates, becoming more separable with age.