4 resultados para latent structure
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Questionnaire data may contain missing values because certain questions do not apply to all respondents. For instance, questions addressing particular attributes of a symptom, such as frequency, triggers or seasonality, are only applicable to those who have experienced the symptom, while for those who have not, responses to these items will be missing. This missing information does not fall into the category 'missing by design', rather the features of interest do not exist and cannot be measured regardless of survey design. Analysis of responses to such conditional items is therefore typically restricted to the subpopulation in which they apply. This article is concerned with joint multivariate modelling of responses to both unconditional and conditional items without restricting the analysis to this subpopulation. Such an approach is of interest when the distributions of both types of responses are thought to be determined by common parameters affecting the whole population. By integrating the conditional item structure into the model, inference can be based both on unconditional data from the entire population and on conditional data from subjects for whom they exist. This approach opens new possibilities for multivariate analysis of such data. We apply this approach to latent class modelling and provide an example using data on respiratory symptoms (wheeze and cough) in children. Conditional data structures such as that considered here are common in medical research settings and, although our focus is on latent class models, the approach can be applied to other multivariate models.
Resumo:
For swine dysentery, which is caused by Brachyspira hyodysenteriae infection and is an economically important disease in intensive pig production systems worldwide, a perfect or error-free diagnostic test ("gold standard") is not available. In the absence of a gold standard, Bayesian latent class modelling is a well-established methodology for robust diagnostic test evaluation. In contrast to risk factor studies in food animals, where adjustment for within group correlations is both usual and required for good statistical practice, diagnostic test evaluation studies rarely take such clustering aspects into account, which can result in misleading results. The aim of the present study was to estimate test accuracies of a PCR originally designed for use as a confirmatory test, displaying a high diagnostic specificity, and cultural examination for B. hyodysenteriae. This estimation was conducted based on results of 239 samples from 103 herds originating from routine diagnostic sampling. Using Bayesian latent class modelling comprising of a hierarchical beta-binomial approach (which allowed prevalence across individual herds to vary as herd level random effect), robust estimates for the sensitivities of PCR and culture, as well as for the specificity of PCR, were obtained. The estimated diagnostic sensitivity of PCR (95% CI) and culture were 73.2% (62.3; 82.9) and 88.6% (74.9; 99.3), respectively. The estimated specificity of the PCR was 96.2% (90.9; 99.8). For test evaluation studies, a Bayesian latent class approach is well suited for addressing the considerable complexities of population structure in food animals.
Resumo:
The most influential theoretical account in time psychophysics assumes the existence of a unitary internal clock based on neural counting. The distinct timing hypothesis, on the other hand, suggests an automatic timing mechanism for processing of durations in the sub-second range and a cognitively controlled timing mechanism for processing of durations in the range of seconds. Although several psychophysical approaches can be applied for identifying the internal structure of interval timing in the second and sub-second range, the existing data provide a puzzling picture of rather inconsistent results. In the present chapter, we introduce confirmatory factor analysis (CFA) to further elucidate the internal structure of interval timing performance in the sub-second and second range. More specifically, we investigated whether CFA would rather support the notion of a unitary timing mechanism or of distinct timing mechanisms underlying interval timing in the sub-second and second range, respectively. The assumption of two distinct timing mechanisms which are completely independent of each other was not supported by our data. The model assuming a unitary timing mechanism underlying interval timing in both the sub-second and second range fitted the empirical data much better. Eventually, we also tested a third model assuming two distinct, but functionally related mechanisms. The correlation between the two latent variables representing the hypothesized timing mechanisms was rather high and comparison of fit indices indicated that the assumption of two associated timing mechanisms described the observed data better than only one latent variable. Models are discussed in the light of the existing psychophysical and neurophysiological data.
Resumo:
The Culture Fair Test (CFT) is a psychometric test of fluid intelligence consisting of four subtests; Series, Classification, Matrices, and Topographies. The four subtests are only moderately intercorrelated, doubting the notion that they assess the same construct (i.e., fluid intelligence). As an explanation of these low correlations, we investigated the position effect. This effect is assumed to reflect implicit learning during testing. By applying fixed-links modeling to analyze the CFT data of 206 participants, we identified position effects as latent variables in the subtests; Classification, Matrices, and Topographies. These position effects were disentangled from a second set of latent variables representing fluid intelligence inherent in the four subtests. After this separation of position effect and basic fluid intelligence, the latent variables representing basic fluid intelligence in the subtests Series, Matrices, and Topographies could be combined to one common latent variable which was highly correlated with fluid intelligence derived from the subtest Classification (r=.72). Correlations between the three latent variables representing the position effects in the Classification, Matrices, and Topographies subtests ranged from r=.38 to r=.59. The results indicate that all four CFT subtests measure the same construct (i.e., fluid intelligence) but that the position effect confounds the factorial structure