13 resultados para lasing

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A computational study of line-focus generation was done using a self-written ray-tracing code and compared to experimental data. Two line-focusing geometries were compared, i.e., either exploiting the sagittal astigmatism of a tilted spherical mirror or using the spherical aberration of an off-axis- illuminated spherical mirror. Line focusing by means of astigmatism or spherical aberration showed identical results as expected for the equivalence of the two frames of reference. The variation of the incidence angle on the target affects the line-focus length, which affects the amplification length such that as long as the irradiance is above the amplification threshold, it is advantageous to have a longer line focus. The amplification threshold is physically dependent on operating parameters and plasma-column conditions and in the present study addresses four possible cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Generation of coherent short-wavelength radiation across a plasma column is dramatically improved under traveling-wave excitation (TWE). The latter is optimized when its propagation is close to the speed of light, which implies small-angle target-irradiation. Yet, short-wavelength lasing needs large irradiation angles in order to increase the optical penetration of the pump into the plasma core. Pulse-front back-tilt is considered to overcome such trade-off. In fact, the TWE speed depends on the pulse-front slope (envelope of amplitude), whereas the optical penetration depth depends on the wave-front slope (envelope of phase). Pulse-front tilt by means of compressor misalignment was found effective only if coupled with a high-magnification front-end imaging/focusing component. It is concluded that speed matching should be accomplished with minimal compressor misalignment and maximal imaging magnification.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Implementing the plasma-lasing potential for tabletop nano-imaging on across a hot plasma medium drives short-wavelength lasing, promising for "turnkey" nano-imaging setups. A systematic study of the illumination characteristics, combined with design-adapted objectives, is presented. It is shown how the ultimate nano-scale feature is dictated by either the diffraction-limited or the wavefront-limited resolution, which imposed a combined study of both the source and the optics. For nano-imaging, the spatial homogeneity of the illumination (spot noise) was shown as critical. Plasma-lasing from a triple grazing-incidence pumping scheme compensated for the missing spot homogeneity in classical schemes. We demonstrate that a collimating mirror pre-conditions both the pointing stability and the divergence below half a mrad.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soft X-ray lasing across a Ni-like plasma gain-medium requires optimum electron temperature and density for attaining to the Ni-like ion stage and for population inversion in the View the MathML source3d94d1(J=0)→3d94p1(J=1) laser transition. Various scaling laws, function of operating parameters, were compared with respect to their predictions for optimum temperatures and densities. It is shown that the widely adopted local thermodynamic equilibrium (LTE) model underestimates the optimum plasma-lasing conditions. On the other hand, non-LTE models, especially when complemented with dielectronic recombination, provided accurate prediction of the optimum plasma-lasing conditions. It is further shown that, for targets with Z equal or greater than the rare-earth elements (e.g. Sm), the optimum electron density for plasma-lasing is not accessible for pump-pulses at View the MathML sourceλ=1ω=1μm. This observation explains a fundamental difficulty in saturating the wavelength of plasma-based X-ray lasers below 6.8 nm, unless using 2ω2ω pumping.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traveling-wave excitation close to the speed of light implies small-angle target-irradiation. Yet, short-wavelength lasing needs large irradiation angles. Pulse-front back-tilt is considered to overcome such trade-off. Pulse-front tilt by means of compressor misalignment was found effective only if coupled with a strong front-end imaging/focusing component.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here, we demonstrate the use of a colloidal CdSe:Te quantum dots suspension as active liquid-core in a specially designed optical element, based on a double-clad optical fiber structure. The liquid-core fiber was realized by filling the hollow core of a capillary and waveguiding of the core was ensured by using a liquid host that exhibits a larger refractive index than the cladding material of the capillary. Since the used capillary possessed a cladding waveguide structure, we obtained a liquid-core double-clad structure. To seal the liquid-core fiber and e.g. prevent the formation of bubbles, we developed a technique based on SMA connectors. The colloidal CdSe:Te quantum dots were excited by cladding-pumping using a pump laser at 532nm operating in the continuous-wave regime. We investigated the photoluminescence emitted from the colloidal CdSe:Te quantum dots suspension liquid-core and guided by the double-clad fiber structure. We observed a red shift of the (core) emission, that depends on the liquid-core fiber length and the pump power. This shift is due to the absorption of unexcited colloidal quantum dots and due to the waveguiding properties of the core. Here we report a core photoluminescence output power of 79.2μW (with an integrated brightness of ≈ 215.5 W/cm2sr ). Finally, we give an explanation, why lasing could not be observed in our experiments when setup as a liquid-core fiber cavity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Refractive losses in laser-produced plasmas used as gain media are caused by electron density gradients, and limit the energy transport range. The pump pulse is thus deflected from the high-gain region and the short wavelength laser signal also steers away, causing loss of collimation. A Hohlraum used as a target makes the plasma homogeneous and can mitigate refractive losses by means of wave-guiding. A computational study combining a hydrodynamics code and an atomic physics code is presented, which includes a ray-tracing modeling based on the eikonal theory of the trajectory equation. This study presents gain calculations based on population inversion produced by free-electron collisions exciting bound electrons into metastable levels in the 3d94d1(J = 0) → 3d94p1(J = 1) transition of Ni-like Sn. Further, the Hohlraum suggests a dramatic enhancement of the conversion efficiency of collisionally excited x-ray lasing for Ni-like Sn.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a power-scalable approach for yellow laser-light generation based on standard Ytterbium (Yb) doped fibers. To force the cavity to lase at 1154 nm, far above the gain-maximum, measures must be taken to fulfill lasing condition and to suppress competing amplified spontaneous emission (ASE) in the high-gain region. To prove the principle we built a fiber-laser cavity and a fiber-amplifier both at 1154 nm. In between cavity and amplifier we suppressed the ASE by 70 dB using a fiber Bragg grating (FBG) based filter. Finally we demonstrated efficient single pass frequency doubling to 577 nm with a periodically poled lithium niobate crystal (PPLN). With our linearly polarized 1154 nm master oscillator power fiber amplifier (MOFA) system we achieved slope efficiencies of more than 15 % inside the cavity and 24 % with the fiber-amplifier. The frequency doubling followed the predicted optimal efficiency achievable with a PPLN crystal. So far we generated 1.5 W at 1154nm and 90 mW at 577 nm. Our MOFA approach for generation of 1154 nm laser radiation is power-scalable by using multi-stage amplifiers and large mode-area fibers and is therefore very promising for building a high power yellow laser-light source of several tens of Watt.