54 resultados para laser interferometry-based guidance

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to assess the performance of two light-emitting diode (LED)- and two laser fluorescence-based devices in detecting occlusal caries in vitro. Ninety-seven permanent molars were assessed twice by two examiners using two LED- (Midwest Caries - MID and VistaProof - VP) and two laser fluorescence-based (DIAGNOdent 2095 - LF and DIAGNOdent pen 2190 - LFpen) devices. After measuring, the teeth were histologically prepared and classified according to lesion extension. At D1 the specificities were 0.76 (LF and LFpen), 0.94 (MID), and 0.70 (VP); the sensitivities were 0.70 (LF), 0.62 (LFpen), 0.31 (MID), and 0.75 (VP). At D(3) threshold the specificities were 0.88 (LF), 0.87 (LFpen), 0.90 (MID), and 0.70 (VP); the sensitivities were 0.63 (LF and LFpen), 0.70 (MID), and 0.96 (VP). Spearman's rank correlations with histology were 0.56 (LF), 0.51 (LFpen), 0.55 (MID), and 0.58 (VP). Inter- and intraexaminer ICC values were high and varied from 0.83 to 0.90. Both LF devices seemed to be useful auxiliary tools to the conventional methods, presenting good reproducibility and better accuracy at D(3) threshold. MID was not able to differentiate sound surfaces from enamel caries and VP still needs improvement on the cut-off limits for its use.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Complete closure of gastrotomy is the linchpin of safe natural orifice transgastric endoscopic surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present experimental results on the intracavity generation of radially polarized light by incorporation of a polarization-selective mirror in a CO2 -laser resonator. The selectivity is achieved with a simple binary dielectric diffraction grating etched in the backsurface of the mirror substrate. Very high polarization selectivity was achieved, and good agreement of simulation and experimental results is shown. The overall radial polarization purity of the generated laser beam was found to be higher than 90% .

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The authors describe a modification of the medial branch kryorhizotomy technique for the treatment of lumbar facet joint syndrome using a fluoroscopy-based laser-guided method. A total of 32 patients suffering from lumbar facet joint syndrome confirmed by positive medial nerve block underwent conventional or laser-guided kryorhizotomy. The procedural time (20.6 +/- 1.0 vs 16.3 +/- 0.9 minutes, p < 0.01), fluoroscopy time (54.1 +/- 3.5 vs 28.2 +/- 2.4 seconds, p < 0.01), radiation dose (407.5 +/- 32.0 vs 224.1 +/- 20.3 cGy/cm(2), p < 0.01), and patient discomfort during the procedure (7.1 +/- 0.4 vs 5.2 +/- 0.4 on the visual analog scale, p < 0.01) were significantly reduced in the laser-guided group. There was a tendency for a better positioning accuracy when the laser guidance method was used (3.0 +/- 0.3 vs 2.2 +/- 0.3 mm of deviation from the target points, p > 0.05). No difference in the outcome was observed between the 2 groups of patients (visual analog scale score 3.5 +/- 0.2 vs 3.3 +/- 0.3, p > 0.05). This improved minimally invasive surgical technique offers advantages to conventional fluoroscopy-based kryorhizotomy.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE: The aim of this study is to implement augmented reality in real-time image-guided interstitial brachytherapy to allow an intuitive real-time intraoperative orientation. METHODS AND MATERIALS: The developed system consists of a common video projector, two high-resolution charge coupled device cameras, and an off-the-shelf notebook. The projector was used as a scanning device by projecting coded-light patterns to register the patient and superimpose the operating field with planning data and additional information in arbitrary colors. Subsequent movements of the nonfixed patient were detected by means of stereoscopically tracking passive markers attached to the patient. RESULTS: In a first clinical study, we evaluated the whole process chain from image acquisition to data projection and determined overall accuracy with 10 patients undergoing implantation. The described method enabled the surgeon to visualize planning data on top of any preoperatively segmented and triangulated surface (skin) with direct line of sight during the operation. Furthermore, the tracking system allowed dynamic adjustment of the data to the patient's current position and therefore eliminated the need for rigid fixation. Because of soft-part displacement, we obtained an average deviation of 1.1 mm by moving the patient, whereas changing the projector's position resulted in an average deviation of 0.9 mm. Mean deviation of all needles of an implant was 1.4 mm (range, 0.3-2.7 mm). CONCLUSIONS: The developed low-cost augmented-reality system proved to be accurate and feasible in interstitial brachytherapy. The system meets clinical demands and enables intuitive real-time intraoperative orientation and monitoring of needle implantation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We present a case of successful interventional laser-assisted extraction of an endovascularly trapped long-term implanted ventriculoatrial shunt in a patient with shunt-associated septicemia. This approach is based on modified techniques for explantation of pacemaker leads and might be considered an additional option for extraction of otherwise nonremovable trapped endovascular catheters in experienced centers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE Laser range scanners (LRS) allow performing a surface scan without physical contact with the organ, yielding higher registration accuracy for image-guided surgery (IGS) systems. However, the use of LRS-based registration in laparoscopic liver surgery is still limited because current solutions are composed of expensive and bulky equipment which can hardly be integrated in a surgical scenario. METHODS In this work, we present a novel LRS-based IGS system for laparoscopic liver procedures. A triangulation process is formulated to compute the 3D coordinates of laser points by using the existing IGS system tracking devices. This allows the use of a compact and cost-effective LRS and therefore facilitates the integration into the laparoscopic setup. The 3D laser points are then reconstructed into a surface to register to the preoperative liver model using a multi-level registration process. RESULTS Experimental results show that the proposed system provides submillimeter scanning precision and accuracy comparable to those reported in the literature. Further quantitative analysis shows that the proposed system is able to achieve a patient-to-image registration accuracy, described as target registration error, of [Formula: see text]. CONCLUSIONS We believe that the presented approach will lead to a faster integration of LRS-based registration techniques in the surgical environment. Further studies will focus on optimizing scanning time and on the respiratory motion compensation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

PURPOSE Treatment of vascular malformations requires the placement of a needle within vessels which may be as small as 1 mm, with the current state of the art relying exclusively on two-dimensional fluoroscopy images for guidance. We hypothesize that the combination of stereotactic image guidance with existing targeting methods will result in faster and more reproducible needle placements, as well as reduced radiationexposure, when compared to standard methods based on fluoroscopy alone. METHODS The proposed navigation approach was evaluated in a phantom experiment designed to allow direct comparison with the conventional method. An anatomical phantom of the left forearm was constructed, including an independent control mechanism to indicate the attainment of the target position. Three interventionalists (one inexperienced, two of them frequently practice the conventional fluoroscopic technique) performed 45 targeting attempts utilizing the combined and 45 targeting attempts utilizing the standard approaches. RESULTS In all 45 attempts, the users were able to reach the target when utilizing the combined approach. In two cases, targeting was stopped after 15 min without reaching the target when utilizing only the C-arm. The inexperienced user was faster when utilizing the combined approach and applied significantly less radiation than when utilizing the conventional approach. Conversely, both experienced users were faster when using the conventional approach, in one case significantly so, with no significant difference in radiation dose when compared to the combined approach. CONCLUSIONS This work presents an initial evaluation of a combined navigation fluoroscopy targeting technique in a phantom study. The results suggest that, especially for inexperienced interventionalists, navigation may help to reduce the time and the radiation dose. Future work will focus on the improvement and clinical evaluation of the proposed method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Seventeen bones (sixteen cadaveric bones and one plastic bone) were used to validate a method for reconstructing a surface model of the proximal femur from 2D X-ray radiographs and a statistical shape model that was constructed from thirty training surface models. Unlike previously introduced validation studies, where surface-based distance errors were used to evaluate the reconstruction accuracy, here we propose to use errors measured based on clinically relevant morphometric parameters. For this purpose, a program was developed to robustly extract those morphometric parameters from the thirty training surface models (training population), from the seventeen surface models reconstructed from X-ray radiographs, and from the seventeen ground truth surface models obtained either by a CT-scan reconstruction method or by a laser-scan reconstruction method. A statistical analysis was then performed to classify the seventeen test bones into two categories: normal cases and outliers. This classification step depends on the measured parameters of the particular test bone. In case all parameters of a test bone were covered by the training population's parameter ranges, this bone is classified as normal bone, otherwise as outlier bone. Our experimental results showed that statistically there was no significant difference between the morphometric parameters extracted from the reconstructed surface models of the normal cases and those extracted from the reconstructed surface models of the outliers. Therefore, our statistical shape model based reconstruction technique can be used to reconstruct not only the surface model of a normal bone but also that of an outlier bone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Laser tissue soldering (LTS) is a promising technique for tissue fusion based on a heat-denaturation process of proteins. Thermal damage of the fused tissue during the laser procedure has always been an important and challenging problem. Particularly in LTS of arterial blood vessels strong heating of the endothelium should be avoided to minimize the risk of thrombosis. A precise knowledge of the temperature distribution within the vessel wall during laser irradiation is inevitable. The authors developed a finite element model (FEM) to simulate the temperature distribution within blood vessels during LTS. Temperature measurements were used to verify and calibrate the model. Different parameters such as laser power, solder absorption coefficient, thickness of the solder layer, cooling of the vessel and continuous vs. pulsed energy deposition were tested to elucidate their impact on the temperature distribution within the soldering joint in order to reduce the amount of further animal experiments. A pulsed irradiation with high laser power and high absorbing solder yields the best results.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An algorithm for the real-time registration of a retinal video sequence captured with a scanning digital ophthalmoscope (SDO) to a retinal composite image is presented. This method is designed for a computer-assisted retinal laser photocoagulation system to compensate for retinal motion and hence enhance the accuracy, speed, and patient safety of retinal laser treatments. The procedure combines intensity and feature-based registration techniques. For the registration of an individual frame, the translational frame-to-frame motion between preceding and current frame is detected by normalized cross correlation. Next, vessel points on the current video frame are identified and an initial transformation estimate is constructed from the calculated translation vector and the quadratic registration matrix of the previous frame. The vessel points are then iteratively matched to the segmented vessel centerline of the composite image to refine the initial transformation and register the video frame to the composite image. Criteria for image quality and algorithm convergence are introduced, which assess the exclusion of single frames from the registration process and enable a loss of tracking signal if necessary. The algorithm was successfully applied to ten different video sequences recorded from patients. It revealed an average accuracy of 2.47 ± 2.0 pixels (∼23.2 ± 18.8 μm) for 2764 evaluated video frames and demonstrated that it meets the clinical requirements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Percutaneous needle intervention based on PET/CT images is effective, but exposes the patient to unnecessary radiation due to the increased number of CT scans required. Computer assisted intervention can reduce the number of scans, but requires handling, matching and visualization of two different datasets. While one dataset is used for target definition according to metabolism, the other is used for instrument guidance according to anatomical structures. No navigation systems capable of handling such data and performing PET/CT image-based procedures while following clinically approved protocols for oncologic percutaneous interventions are available. The need for such systems is emphasized in scenarios where the target can be located in different types of tissue such as bone and soft tissue. These two tissues require different clinical protocols for puncturing and may therefore give rise to different problems during the navigated intervention. Studies comparing the performance of navigated needle interventions targeting lesions located in these two types of tissue are not often found in the literature. Hence, this paper presents an optical navigation system for percutaneous needle interventions based on PET/CT images. The system provides viewers for guiding the physician to the target with real-time visualization of PET/CT datasets, and is able to handle targets located in both bone and soft tissue. The navigation system and the required clinical workflow were designed taking into consideration clinical protocols and requirements, and the system is thus operable by a single person, even during transition to the sterile phase. Both the system and the workflow were evaluated in an initial set of experiments simulating 41 lesions (23 located in bone tissue and 18 in soft tissue) in swine cadavers. We also measured and decomposed the overall system error into distinct error sources, which allowed for the identification of particularities involved in the process as well as highlighting the differences between bone and soft tissue punctures. An overall average error of 4.23 mm and 3.07 mm for bone and soft tissue punctures, respectively, demonstrated the feasibility of using this system for such interventions. The proposed system workflow was shown to be effective in separating the preparation from the sterile phase, as well as in keeping the system manageable by a single operator. Among the distinct sources of error, the user error based on the system accuracy (defined as the distance from the planned target to the actual needle tip) appeared to be the most significant. Bone punctures showed higher user error, whereas soft tissue punctures showed higher tissue deformation error.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The excimer laser-assisted nonocclusive anastomosis (ELANA) technique has been developed as a clinical effective technique to perform intracranial high-flow bypass without temporary occlusion of cerebral vessels in otherwise untreatable or high-risk cerebrovascular diseases. We experimentally tested the application of a nonabsorbable cyanoacrylate-based sealant with the ELANA technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors conducted an in vivo study to determine clinical cutoffs for a laser fluorescence (LF) device, an LF pen and a fluorescence camera (FC), as well as to evaluate the clinical performance of these methods and conventional methods in detecting occlusal caries in permanent teeth by using the histologic gold standard for total validation of the sample.