6 resultados para landscape characteristics
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
OBJECTIVES: The present literature review conceptualises landscape as a health resource that promotes physical, mental, and social well-being. Different health-promoting landscape characteristics are discussed. METHODS: This article is based on a scoping study which represents a special kind of qualitative literature review. Over 120 studies have been reviewed in a five-step-procedure, resulting in a heuristic device. RESULTS: A set of meaningful pathways that link landscape and health have been identified. Landscapes have the potential to promote mental well-being through attention restoration, stress reduction, and the evocation of positive emotions; physical well-being through the promotion of physical activity in daily life as well as leisure time and through walkable environments; and social well-being through social integration, social engagement and participation, and through social support and security. CONCLUSION: This scoping study allows us to systematically describe the potential of landscape as a resource for physical, mental and social well-being. A heuristic framework is presented that can be applied in future studies, facilitating systematic and focused research approaches and informing practical public health interventions.
Resumo:
Agricultural intensification has caused a decline in structural elements in European farmland, where natural habitats are increasingly fragmented. The loss of habitat structures has a detrimental effect on biodiversity and affects bat species that depend on vegetation structures for foraging and commuting. We investigated the impact of connectivity and configuration of structural landscape elements on flight activity, species richness and diversity of insectivorous bats and distinguished three bat guilds according to species-specific bioacoustic characteristics. We tested whether bats with shorter-range echolocation were more sensitive to habitat fragmentation than bats with longer-range echolocation. We expected to find different connectivity thresholds for the three guilds and hypothesized that bats prefer linear over patchy landscape elements. Bat activity was quantified using repeated acoustic monitoring in 225 locations at 15 study plots distributed across the Swiss Central Plateau, where connectivity and the shape of landscape elements were determined by spatial analysis (GIS). Spectrograms of bat calls were assigned to species with the software batit by means of image recognition and statistical classification algorithms. Bat activity was significantly higher around landscape elements compared to open control areas. Short- and long-range echolocating bats were more active in well-connected landscapes, but optimal connectivity levels differed between the guilds. Species richness increased significantly with connectivity, while species diversity did not (Shannon's diversity index). Total bat activity was unaffected by the shape of landscape elements. Synthesis and applications. This study highlights the importance of connectivity in farmland landscapes for bats, with shorter-range echolocating bats being particularly sensitive to habitat fragmentation. More structurally diverse landscape elements are likely to reduce population declines of bats and could improve conditions for other declining species, including birds. Activity was highest around optimal values of connectivity, which must be evaluated for the different guilds and spatially targeted for a region's habitat configuration. In a multi-species approach, we recommend the reintroduction of structural elements to increase habitat heterogeneity should become part of agri-environment schemes.
Resumo:
Mapping ecosystem services (ES) and their trade-offs is a key requirement for informed decision making for land use planning and management of natural resources that aim to move towards increasing the sustainability of landscapes. The negotiations of the purposes of landscapes and the services they should provide are difficult as there is an increasing number of stakeholders active at different levels with a variety of interests present on one particular landscape.Traditionally, land cover data is at the basis for mapping and spatial monitoring of ecosystem services. In light of complex landscapes it is however questionable whether land cover per se and as a spatial base unit is suitable for monitoring and management at the meso-scale. Often the characteristics of a landscape are defined by prevalence, composition and specific spatial and temporal patterns of different land cover types. The spatial delineation of shifting cultivation agriculture represents a prominent example of a land use system with its different land use intensities that requires alternative methodologies that go beyond the common remote sensing approaches of pixel-based land cover analysis due to the spatial and temporal dynamics of rotating cultivated and fallow fields.Against this background we advocate that adopting a landscape perspective to spatial planning and decision making offers new space for negotiation and collaboration, taking into account the needs of local resource users, and of the global community. For this purpose we introduce landscape mosaicsdefined as new spatial unit describing generalized land use types. Landscape mosaics have allowed us to chart different land use systems and land use intensities and permitted us to delineate changes in these land use systems based on changes of external claims on these landscapes. The underlying idea behindthe landscape mosaics is to use land cover data typically derived from remote sensing data and to analyse and classify spatial patterns of this land cover data using a moving window approach. We developed the landscape mosaics approach in tropical, forest dominated landscapesparticularly shifting cultivation areas and present examples ofour work from northern Laos, eastern Madagascarand Yunnan Province in China.
Resumo:
The delineation of shifting cultivation landscapes using remote sensing in mountainous regions is challenging. On the one hand, there are difficulties related to the distinction of forest and fallow forest classes as occurring in a shifting cultivation landscape in mountainous regions. On the other hand, the dynamic nature of the shifting cultivation system poses problems to the delineation of landscapes where shifting cultivation occurs. We present a two-step approach based on an object-oriented classification of Advanced Land Observing Satellite, Advanced Visible and Near-Infrared Spectrometer (ALOS AVNIR) and Panchromatic Remote-sensing Instrument for Stereo Mapping (ALOS PRISM) data and landscape metrics. When including texture measures in the object-oriented classification, the accuracy of forest and fallow forest classes could be increased substantially. Based on such a classification, landscape metrics in the form of land cover class ratios enabled the identification of crop-fallow rotation characteristics of the shifting cultivation land use practice. By classifying and combining these landscape metrics, shifting cultivation landscapes could be delineated using a single land cover dataset.
Resumo:
Conservation and monitoring of forest biodiversity requires reliable information about forest structure and composition at multiple spatial scales. However, detailed data about forest habitat characteristics across large areas are often incomplete due to difficulties associated with field sampling methods. To overcome this limitation we employed a nationally available light detection and ranging (LiDAR) remote sensing dataset to develop variables describing forest landscape structure across a large environmental gradient in Switzerland. Using a model species indicative of structurally rich mountain forests (hazel grouse Bonasa bonasia), we tested the potential of such variables to predict species occurrence and evaluated the additional benefit of LiDAR data when used in combination with traditional, sample plot-based field variables. We calibrated boosted regression trees (BRT) models for both variable sets separately and in combination, and compared the models’ accuracies. While both field-based and LiDAR models performed well, combining the two data sources improved the accuracy of the species’ habitat model. The variables retained from the two datasets held different types of information: field variables mostly quantified food resources and cover in the field and shrub layer, LiDAR variables characterized heterogeneity of vegetation structure which correlated with field variables describing the understory and ground vegetation. When combined with data on forest vegetation composition from field surveys, LiDAR provides valuable complementary information for encompassing species niches more comprehensively. Thus, LiDAR bridges the gap between precise, locally restricted field-data and coarse digital land cover information by reliably identifying habitat structure and quality across large areas.
Resumo:
Structural characteristics of social networks have been recognized as important factors of effective natural resource governance. However, network analyses of natural resource governance most often remain static, even though governance is an inherently dynamic process. In this article, we investigate the evolution of a social network of organizational actors involved in the governance of natural resources in a regional nature park project in Switzerland. We ask how the maturation of a governance network affects bonding social capital and centralization in the network. Applying separable temporal exponential random graph modeling (STERGM), we test two hypotheses based on the risk hypothesis by Berardo and Scholz (2010) in a longitudinal setting. Results show that network dynamics clearly follow the expected trend toward generating bonding social capital but do not imply a shift toward less hierarchical and more decentralized structures over time. We investigate how these structural processes may contribute to network effectiveness over time.