7 resultados para lag controllers
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Serotypes of Streptococcus pneumoniae differ in colonization prevalence and the likelihood of causing disease. In vitro growth in brain heart infusion broth with or without 5% fetal calf serum (FCS) was compared for 47 clinical isolates representing 15 pneumococcal serotypes. Serotype-specific colonization prevalence and odds ratios for the invasive potential were obtained from an international and a local epidemiological study. The duration of the lag phase increased with the invasiveness and was inversely associated with the colonization prevalence of a serotype. Supplementation with FCS shortened the lag phase preferentially in serotypes associated with invasive disease (P=0.007). Reduction of oxidative stress by addition of manganese (Mn(2+)), Tiron, mannitol or catalase did not influence the duration of the lag phase significantly. Serotype specific invasiveness and colonization prevalence of S. pneumoniae are associated with the length of the lag phase during in vitro growth. This may correlate with serotype specific selection in vivo.
Resumo:
Ezrin, radixin and moesin (ERM) proteins are widely distributed proteins located in the cellular cortex, in microvilli and adherens junctions. They feature an N-terminal membrane binding domain linked by an alpha-helical domain to the C-terminal actin-binding domain. In the dormant state, binding sites in the N-terminal domain are masked by interactions with the C-terminal region. The alpha-helical domain also contributes to masking of binding sites. A specific sequence of signaling events results in dissociation of these intramolecular interactions resulting in ERM activation. ERM molecules have been implicated in mediating actin-membrane linkage and in regulating signaling molecules. They are involved in cell membrane organization, cell migration, phagocytosis and apoptosis, and may also play cell-specific roles in tumor progression. Their precise involvement in these processes has yet to be elucidated.
Resumo:
Twenty-eight feline pelves (56 hemipelves) were examined in order to identify the location for optimal sacroiliac screw placement in sacroiliac fracture-luxation repair. A drill hole was started on the median plane of the hemipelvis in the centre of the body of the first sacral segment until it penetrated the lateral cortex of the ilial wing, thus providing optimal drill hole placement. The position of the drill hole on the articular surface of the sacral wing and on the lateral surface of the ilial wing was measured. The distance of the drill hole from the cranial margin of the sacral wing was 51% of sacral wing length, just cranial to the crescent shaped hyaline cartilage. The distance from the dorsal margin was 47% of sacral wing height. The drill bit direction has to be adjusted to the cranio-caudal inclination (range 10° to 29°) and dorso-ventral inclination (range 2° to 25°) of the sacral wing. A notch in the cranial edge of the sacral wing was present, with variable position, in 34% of the specimens and is consequently not a useful landmark for sacroiliac screw placement. The drill hole on the lateral surface of the ilium was located in craniocaudal direction at a distance of 69% of sacral tuber length, measured from the cranial dorsal iliac spine. The dorso-ventral position of the drill hole was at a distance of 52% of ilial wing height measured from the sacral tuber. The ventral gluteal line, present in 93% of the cases, is a useful landmark to locate optimal screw hole position on the ilial wing.