22 resultados para knowledge framework
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
There is increasing recognition that transdisciplinary approaches are needed to create suitable knowledge for sustainable water management. However, there is no common understanding of what transdisciplinary research may be and there is very limited debate on potentials and challenges regarding its implementation. Against this background, this paper presents a conceptual framework for transdisciplinary co-production of knowledge in water management projects oriented towards more sustainable use of water. Moreover, first experiences with its implementation are discussed. In so doing, the focus lies on potentials and challenges related to the co-production of systems, target and transformation knowledge by researchers and local stakeholders.
Resumo:
The present distribution of freshwater fish in the Alpine region has been strongly affected by colonization events occurring after the last glacial maximum (LGM), some 20,000 years ago. We use here a spatially explicit simulation framework to model and better understand their colonization dynamics in the Swiss Rhine basin. This approach is applied to the European bullhead (Cottus gobio), which is an ideal model organism to study fish past demographic processes since it has not been managed by humans. The molecular diversity of eight sampled populations is simulated and compared to observed data at six microsatellite loci under an approximate Bayesian computation framework to estimate the parameters of the colonization process. Our demographic estimates fit well with current knowledge about the biology of this species, but they suggest that the Swiss Rhine basin was colonized very recently, after the Younger Dryas some 6600 years ago. We discuss the implication of this result, as well as the strengths and limits of the spatially explicit approach coupled to the approximate Bayesian computation framework.
Resumo:
The development and evaluation of new algorithms and protocols for Wireless Multimedia Sensor Networks (WMSNs) are usually supported by means of a discrete event network simulator, where OMNeT++ is one of the most important ones. However, experiments involving multimedia transmission, video flows with different characteristics, genres, group of pictures lengths, and coding techniques must be evaluated based also on Quality of Experience (QoE) metrics to reflect the user's perception. Such experiments require the evaluation of video-related information, i.e., frame type, received/lost, delay, jitter, decoding errors, as well as inter and intra-frame dependency of received/distorted videos. However, existing OMNeT++ frameworks for WMSNs do not support video transmissions with QoE-awareness, neither a large set of mobility traces to enable evaluations under different multimedia/mobile situations. In this paper, we propose a Mobile MultiMedia Wireless Sensor Network OMNeT++ framework (M3WSN) to support transmission, control and evaluation of real video sequences in mobile WMSNs.
Resumo:
A social Semantic Web empowers its users to have access to collective Web knowledge in a simple manner, and for that reason, controlling online privacy and reputation becomes increasingly important, and must be taken seriously. This chapter presents Fuzzy Cognitive Maps (FCM) as a vehicle for Web knowledge aggregation, representation, and reasoning. With this in mind, a conceptual framework for Web knowledge aggregation, representation, and reasoning is introduced along with a use case, in which the importance of investigative searching for online privacy and reputation is highlighted. Thereby it is demonstrated how a user can establish a positive online presence.
Resumo:
Online reputation management deals with monitoring and influencing the online record of a person, an organization or a product. The Social Web offers increasingly simple ways to publish and disseminate personal or opinionated information, which can rapidly have a disastrous influence on the online reputation of some of the entities. The author focuses on the Social Web and possibilities of its integration with the Semantic Web as resource for a semi-automated tracking of online reputations using imprecise natural language terms. The inherent structure of natural language supports humans not only in communication but also in the perception of the world. Thereby fuzziness is a promising tool for transforming those human perceptions into computer artifacts. Through fuzzy grassroots ontologies, the Social Semantic Web becomes more naturally and thus can streamline online reputation management. For readers interested in the cross-over field of computer science, information systems, and social sciences, this book is an ideal source for becoming acquainted with the evolving field of fuzzy online reputation management in the Social Semantic Web area.
Resumo:
Online reputation management deals with monitoring and influencing the online record of a person, an organization or a product. The Social Web offers increasingly simple ways to publish and disseminate personal or opinionated information, which can rapidly have a disastrous influence on the online reputation of some of the entities. This dissertation can be split into three parts: In the first part, possible fuzzy clustering applications for the Social Semantic Web are investigated. The second part explores promising Social Semantic Web elements for organizational applications,while in the third part the former two parts are brought together and a fuzzy online reputation analysis framework is introduced and evaluated. Theentire PhD thesis is based on literature reviews as well as on argumentative-deductive analyses.The possible applications of Social Semantic Web elements within organizations have been researched using a scenario and an additional case study together with two ancillary case studies—based on qualitative interviews. For the conception and implementation of the online reputation analysis application, a conceptual framework was developed. Employing test installations and prototyping, the essential parts of the framework have been implemented.By following a design sciences research approach, this PhD has created two artifacts: a frameworkand a prototype as proof of concept. Bothartifactshinge on twocoreelements: a (cluster analysis-based) translation of tags used in the Social Web to a computer-understandable fuzzy grassroots ontology for the Semantic Web, and a (Topic Maps-based) knowledge representation system, which facilitates a natural interaction with the fuzzy grassroots ontology. This is beneficial to the identification of unknown but essential Web data that could not be realized through conventional online reputation analysis. Theinherent structure of natural language supports humans not only in communication but also in the perception of the world. Fuzziness is a promising tool for transforming those human perceptions intocomputer artifacts. Through fuzzy grassroots ontologies, the Social Semantic Web becomes more naturally and thus can streamline online reputation management.
Resumo:
The future Internet architecture aims to reformulate the way the content/service is requested to make it location-independent. Information-Centric Networking is a new network paradigm, which tries to achieve this goal by making content objects identified and requested by name instead of address. In this paper, we extend Information-Centric Networking architecture to support services in order to be requested and invoked by names. We present NextServe framework, which is a service framework with a human-readable self-explanatory naming scheme. NextServe is inspired by the object-oriented programming paradigm and is applicable with real-world scenarios.
Resumo:
The existing literature suggests that transitions in software-maintenance offshore outsourcing projects are prone to knowledge transfer blockades, i.e. situations in which the activities that would yield effective knowledge transfer do not occur, and that client management involvement is central to overcome them. However, the theoretical understanding of the knowledge transfer blockade is limited, and the reactive management behavior reported in case studies suggests that practitioners may frequently be astonished by the dynamics that may give rise to the blockade. Drawing on recent research from offshore sourcing and reference theories, this study proposes a system dynamics framework that may explain why knowledge transfer blockades emerge and how and why client management can overcome the blockade. The results suggest that blockades may emerge from a vicious circle of weak learning due to cognitive overload of vendor staff and resulting negative ability attributions that result in reduced helping behavior and thus aggravate cognitive load. Client management may avoid these vicious circles by selecting vendor staff with strong prior related experience. Longer phases of coexistence of vendor staff and subject matter experts and high formal and clan controls may also mitigate vicious circles.
Resumo:
This chapter presents fuzzy cognitive maps (FCM) as a vehicle for Web knowledge aggregation, representation, and reasoning. The corresponding Web KnowARR framework incorporates findings from fuzzy logic. To this end, a first emphasis is particularly on the Web KnowARR framework along with a stakeholder management use case to illustrate the framework’s usefulness as a second focal point. This management form is to help projects to acceptance and assertiveness where claims for company decisions are actively involved in the management process. Stakeholder maps visually (re-) present these claims. On one hand, they resort to non-public content and on the other they resort to content that is available to the public (mostly on the Web). The Semantic Web offers opportunities not only to present public content descriptively but also to show relationships. The proposed framework can serve as the basis for the public content of stakeholder maps.
Resumo:
The Social Web offers increasingly simple ways to publish and disseminate personal or opinionated information, which can rapidly exhibit a disastrous influence on the online reputation of organizations. Based on social Web data, this study describes the building of an ontology based on fuzzy sets. At the end of a recurring harvesting of folksonomies by Web agents, the aggregated tags are purified, linked, and transformed to a so-called fuzzy grassroots ontology by means of a fuzzy clustering algorithm. This self-updating ontology is used for online reputation analysis, a crucial task of reputation management, with the goal to follow the online conversation going on around an organization to discover and monitor its reputation. In addition, an application of the Fuzzy Online Reputation Analysis (FORA) framework, lesson learned, and potential extensions are discussed in this article.
Resumo:
Answering run-time questions in object-oriented systems involves reasoning about and exploring connections between multiple objects. Developer questions exercise various aspects of an object and require multiple kinds of interactions depending on the relationships between objects, the application domain and the differing developer needs. Nevertheless, traditional object inspectors, the essential tools often used to reason about objects, favor a generic view that focuses on the low-level details of the state of individual objects. This leads to an inefficient effort, increasing the time spent in the inspector. To improve the inspection process, we propose the Moldable Inspector, a novel approach for an extensible object inspector. The Moldable Inspector allows developers to look at objects using multiple interchangeable presentations and supports a workflow in which multiple levels of connecting objects can be seen together. Both these aspects can be tailored to the domain of the objects and the question at hand. We further exemplify how the proposed solution improves the inspection process, introduce a prototype implementation and discuss new directions for extending the Moldable Inspector.