4 resultados para kinetics modeling
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The goals of the present study were to model the population kinetics of in vivo influx and efflux processes of grepafloxacin at the serum-cerebrospinal fluid (CSF) barrier and to propose a simulation-based approach to optimize the design of dose-finding trials in the meningitis rabbit model. Twenty-nine rabbits with pneumococcal meningitis receiving grepafloxacin at 15 mg/kg of body weight (intravenous administration at 0 h), 30 mg/kg (at 0 h), or 50 mg/kg twice (at 0 and 4 h) were studied. A three-compartment population pharmacokinetic model was fit to the data with the program NONMEM (Nonlinear Mixed Effects Modeling). Passive diffusion clearance (CL(diff)) and active efflux clearance (CL(active)) are transfer kinetic modeling parameters. Influx clearance is assumed to be equal to CL(diff), and efflux clearance is the sum of CL(diff), CL(active), and bulk flow clearance (CL(bulk)). The average influx clearance for the population was 0.0055 ml/min (interindividual variability, 17%). Passive diffusion clearance was greater in rabbits receiving grepafloxacin at 15 mg/kg than in those treated with higher doses (0.0088 versus 0.0034 ml/min). Assuming a CL(bulk) of 0.01 ml/min, CL(active) was estimated to be 0.017 ml/min (11%), and clearance by total efflux was estimated to be 0.032 ml/min. The population kinetic model allows not only to quantify in vivo efflux and influx mechanisms at the serum-CSF barrier but also to analyze the effects of different dose regimens on transfer kinetic parameters in the rabbit meningitis model. The modeling-based approach also provides a tool for the simulation and prediction of various outcomes in which researchers might be interested, which is of great potential in designing dose-finding trials.
Resumo:
Recent advances have revealed that during exogenous airway challenge, airway diameters can not be adequately predicted by their initial diameters. Furthermore, airway diameters can also vary greatly in time on scales shorter than a breath. In order to better understand these phenomena, we developed a multiscale model which allows us to simulate aerosol challenge in the airways during ventilation. The model incorporates agonist-receptor binding kinetics to govern the temporal response of airway smooth muscle (ASM) contraction on individual airway segments, which together with airway wall mechanics, determines local airway caliber. Global agonist transport and deposition is coupled with pressure-driven flow, linking local airway constrictions with global flow dynamics. During the course of challenge, airway constriction alters the flow pattern, redistributing agonist to less constricted regions. This results in a negative feedback which may be a protective property of the normal lung. As a consequence, repetitive challenge can cause spatial constriction patterns to evolve in time, resulting in a loss of predictability of airway diameters. Additionally, the model offers new insight into several phenomena including the intra- and inter-breath dynamics of airway constriction throughout the tree structure.
Resumo:
Many biological processes depend on the sequential assembly of protein complexes. However, studying the kinetics of such processes by direct methods is often not feasible. As an important class of such protein complexes, pore-forming toxins start their journey as soluble monomeric proteins, and oligomerize into transmembrane complexes to eventually form pores in the target cell membrane. Here, we monitored pore formation kinetics for the well-characterized bacterial pore-forming toxin aerolysin in single cells in real time to determine the lag times leading to the formation of the first functional pores per cell. Probabilistic modeling of these lag times revealed that one slow and seven equally fast rate-limiting reactions best explain the overall pore formation kinetics. The model predicted that monomer activation is the rate-limiting step for the entire pore formation process. We hypothesized that this could be through release of a propeptide and indeed found that peptide removal abolished these steps. This study illustrates how stochasticity in the kinetics of a complex process can be exploited to identify rate-limiting mechanisms underlying multistep biomolecular assembly pathways.
Resumo:
Normal grain growth of calcite was investigated by combining grain size analysis of calcite across the contact aureole of the Adamello pluton, and grain growth modeling based on a thermal model of the surroundings of the pluton. In an unbiased model system, i.e., location dependent variations in temperature-time path, 2/3 and 1/3 of grain growth occurs during pro- and retrograde metamorphism at all locations, respectively. In contrast to this idealized situation, in the field example three groups can be distinguished, which are characterized by variations in their grain size versus temperature relationships: Group I occurs at low temperatures and the grain size remains constant because nano-scale second phase particles of organic origin inhibit grain growth in the calcite aggregates under these conditions. In the presence of an aqueous fluid, these second phases decay at a temperature of about 350 °C enabling the onset of grain growth in calcite. In the following growth period, fluid-enhanced group II and slower group III growth occurs. For group II a continuous and intense grain size increase with T is typical while the grain growth decreases with T for group III. None of the observed trends correlate with experimentally based grain growth kinetics, probably due to differences between nature and experiment which have not yet been investigated (e.g., porosity, second phases). Therefore, grain growth modeling was used to iteratively improve the correlation between measured and modeled grain sizes by optimizing activation energy (Q), pre-exponential factor (k0) and grain size exponent (n). For n=2, Q of 350 kJ/mol, k0 of 1.7×1021 μmns−1 and Q of 35 kJ/mol, k0 of 2.5×10-5 μmns−1 were obtained for group II and III, respectively. With respect to future work, field-data based grain growth modeling might be a promising tool for investigating the influences of secondary effects like porosity and second phases on grain growth in nature, and to unravel differences between nature and experiment.