25 resultados para kidney cell

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Close similarities of various physiological parameters makes the pig one of the preferred animal models for the study of human diseases, especially those involving the cardiovascular system. Unfortunately, the use of pig models to study diseases such as viral hemorrhagic fevers and endotoxic shock syndrome have been hampered by the lack of the necessary immunological tools to measure important immunoregulatory cytokines such as tumor necrosis factor (TNF). Here we describe a TNF-bioassay which is based on the porcine kidney cell line PK(15). Compared to the widely used murine fibroblastoid cell line L929, the PK(15) cell line displays a 100-1000-fold higher sensitivity for porcine TNF-alpha, a higher sensitivity for human TNF-alpha, and a slightly lower sensitivity for murine TNF-alpha. Using a PK(15) bioassay we can detect recombinant TNF-alpha as well as cytotoxic activity in the supernatants of lipopolysaccharide (LPS)-activated porcine monocytes at high dilutions. This suggests that the sensitivity of the test should permit the detection of TNF in biological specimens such as pig serum.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We describe the steady-state function of the ubiquitous mammalian Na/H exchanger (NHE)1 isoform in voltage-clamped Chinese hamster ovary cells, as well as other cells, using oscillating pH-sensitive microelectrodes to quantify proton fluxes via extracellular pH gradients. Giant excised patches could not be used as gigaseal formation disrupts NHE activity within the patch. We first analyzed forward transport at an extracellular pH of 8.2 with no cytoplasmic Na (i.e., nearly zero-trans). The extracellular Na concentration dependence is sigmoidal at a cytoplasmic pH of 6.8 with a Hill coefficient of 1.8. In contrast, at a cytoplasmic pH of 6.0, the Hill coefficient is <1, and Na dependence often appears biphasic. Results are similar for mouse skin fibroblasts and for an opossum kidney cell line that expresses the NHE3 isoform, whereas NHE1(-/-) skin fibroblasts generate no proton fluxes in equivalent experiments. As proton flux is decreased by increasing cytoplasmic pH, the half-maximal concentration (K(1/2)) of extracellular Na decreases less than expected for simple consecutive ion exchange models. The K(1/2) for cytoplasmic protons decreases with increasing extracellular Na, opposite to predictions of consecutive exchange models. For reverse transport, which is robust at a cytoplasmic pH of 7.6, the K(1/2) for extracellular protons decreases only a factor of 0.4 when maximal activity is decreased fivefold by reducing cytoplasmic Na. With 140 mM of extracellular Na and no cytoplasmic Na, the K(1/2) for cytoplasmic protons is 50 nM (pH 7.3; Hill coefficient, 1.5), and activity decreases only 25% with extracellular acidification from 8.5 to 7.2. Most data can be reconstructed with two very different coupled dimer models. In one model, monomers operate independently at low cytoplasmic pH but couple to translocate two ions in "parallel" at alkaline pH. In the second "serial" model, each monomer transports two ions, and translocation by one monomer allosterically promotes translocation by the paired monomer in opposite direction. We conclude that a large fraction of mammalian Na/H activity may occur with a 2Na/2H stoichiometry.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Classical swine fever virus replicon particles (CSF-VRP) deficient for E(rns) were evaluated as a non-transmissible marker vaccine. A cDNA clone of CSFV strain Alfort/187 was used to obtain a replication-competent mutant genome (replicon) lacking the sequence encoding the 227 amino acids of the glycoprotein E(rns) (A187delE(rns)). For packaging of A187delE(rns) into virus particles, porcine kidney cell lines constitutively expressing E(rns) of CSFV were established. The rescued VRP were infectious in cell culture but did not yield infectious progeny virus. Single intradermal vaccination of two pigs with 10(7) TCID(50) of VRP A187delE(rns) elicited neutralizing antibodies, anti-E2 antibodies, and cellular immune responses determined by an increase of IFN-gamma producing cells. No anti-E(rns) antibodies were detected in the vaccinees confirming that this vaccine represents a negative marker vaccine allowing differentiation between infected and vaccinated animals. The two pigs were protected against lethal challenge with the highly virulent CSFV strain Eystrup. In contrast, oral immunization resulted in only partial protection, and neither CSFV-specific antibodies nor stimulated T-cells were found before challenge. These data represent a good basis for more extended vaccination/challenge trials including larger numbers of animals as well as more thorough analysis of virus shedding using sentinel animals to monitor horizontal spread of the challenge virus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

FGFRL1 (fibroblast growth factor receptor like 1) is the fifth and most recently discovered member of the fibroblast growth factor receptor (FGFR) family. With up to 50% amino acid similarity, its extracellular domain closely resembles that of the four conventional FGFRs. Its intracellular domain, however, lacks the split tyrosine kinase domain needed for FGF-mediated signal transduction. During embryogenesis of the mouse, FGFRL1 is essential for the development of parts of the skeleton, the diaphragm muscle, the heart, and the metanephric kidney. Since its discovery, it has been hypothesized that FGFRL1 might act as a decoy receptor for FGF ligands. Here we present several lines of evidence that support this notion. We demonstrate that the FGFRL1 ectodomain is shed from the cell membrane of differentiating C2C12 myoblasts and from HEK293 cells by an as yet unidentified protease, which cuts the receptor in the membrane-proximal region. As determined by ligand dot blot analysis, cell-based binding assays, and surface plasmon resonance analysis, the soluble FGFRL1 ectodomain as well as the membrane-bound receptor are capable of binding to some FGF ligands with high affinity, including FGF2, FGF3, FGF4, FGF8, FGF10, and FGF22. We furthermore show that ectopic expression of FGFRL1 in Xenopus embryos antagonizes FGFR signaling during early development. Taken together, our data provide strong evidence that FGFRL1 is indeed a decoy receptor for FGFs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aldosterone and corticosterone bind to mineralocorticoid (MR) and glucocorticoid receptors (GR), which, upon ligand binding, are thought to translocate to the cell nucleus to act as transcription factors. Mineralocorticoid selectivity is achieved by the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) that inactivates 11β-hydroxy glucocorticoids. High expression levels of 11β-HSD2 characterize the aldosterone-sensitive distal nephron (ASDN), which comprises the segment-specific cells of late distal convoluted tubule (DCT2), connecting tubule (CNT), and collecting duct (CD). We used MR- and GR-specific antibodies to study localization and regulation of MR and GR in kidneys of rats with altered plasma aldosterone and corticosterone levels. In control rats, MR and GR were found in cell nuclei of thick ascending limb (TAL), DCT, CNT, CD cells, and intercalated cells (IC). GR was also abundant in cell nuclei and the subapical compartment of proximal tubule (PT) cells. Dietary NaCl loading, which lowers plasma aldosterone, caused a selective removal of GR from cell nuclei of 11β-HSD2-positive ASDN. The nuclear localization of MR was unaffected. Adrenalectomy (ADX) resulted in removal of MR and GR from the cell nuclei of all epithelial cells. Aldosterone replacement rapidly relocated the receptors in the cell nuclei. In ASDN cells, low-dose corticosterone replacement caused nuclear localization of MR, but not of GR. The GR was redistributed to the nucleus only in PT, TAL, early DCT, and IC that express no or very little 11β-HSD2. In ASDN cells, nuclear GR localization was only achieved when corticosterone was replaced at high doses. Thus ligand-induced nuclear translocation of MR and GR are part of MR and GR regulation in the kidney and show remarkable segment- and cell type-specific characteristics. Differential regulation of MR and GR may alter the level of heterodimerization of the receptors and hence may contribute to the complexity of corticosteroid effects on ASDN function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To present recent advances in the field of lymph node dissection (LND) in the context of bladder cancer, upper urinary tract urothelial carcinoma and renal cell carcinoma with focus on dissection extent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thrombotic microangiopathy (TMA) has multiple etiologies. In the four disorders described in this review, the primary organ involved is the kidney. Drug-associated TMA can be an acute, immune-mediated disorder or the result of gradual, dose-dependent toxicity. TMA may occur in patients with advanced HIV infection, possibly mediated by angio-invasive infections. TMA following allogeneic hematopoietic stem cell transplantation may also be caused by drug toxicity; the pathogenesis may involve inhibition of vascular endothelial cell growth factor in renal podocytes. Malignancies of many types with systemic microvascular involvement may cause TMA. Recognition that these syndromes may mimic TTP is important to provide appropriate management and to avoid the inappropriate use of plasma exchange treatment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Several members of the human kallikrein-related peptidase family, including KLK6, are up-regulated in ovarian cancer. High KLK6 mRNA or protein expression, measured by quantitative polymerase chain reaction and enzyme-linked immunoassay, respectively, was previously found to be associated with a shortened overall and progression-free survival (OS and PFS, respectively). In the present study, we aimed at analyzing KLK6 protein expression in ovarian cancer tissue by immunohistochemistry. Using a newly developed monospecific polyclonal antibody, KLK6 immunoexpression was initially evaluated in normal tissues. We observed strong staining in the brain and moderate staining in the kidney, liver, and ovary, whereas the pancreas and the skeletal muscle were unreactive, which is in line with previously published results. Next, both tumor cell- and stromal cell-associated KLK6 immunoexpression were analyzed in tumor tissue specimens of 118 ovarian cancer patients. In multivariate Cox regression analysis, only stromal cell-associated expression, besides the established clinical parameters FIGO stage and residual tumor mass, was found to be statistically significant for OS and PFS [high vs. low KLK6 expression; hazard ratio (HR), 1.92; p=0.017; HR, 1.80; p=0.042, respectively]. These results indicate that KLK6 expressed by stromal cells may considerably contribute to the aggressiveness of ovarian cancer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the impact of red blood cell (RBC) Life-spans in some disease areas such as diabetes or anemia of chronic kidney disease, there is no consensus on how to quantitatively best describe the process. Several models have been proposed to explain the elimination process of RBCs: random destruction process, homogeneous life-span model, or a series of 4-transit compartment model. The aim of this work was to explore the different models that have been proposed in literature, and modifications to those. The impact of choosing the right model on future outcomes prediction--in the above mentioned areas--was also investigated. Both data from indirect (clinical data) and direct life-span measurement (biotin-labeled data) methods were analyzed using non-linear mixed effects models. Analysis showed that: (1) predictions from non-steady state data will depend on the RBC model chosen; (2) the transit compartment model, which considers variation in life-span in the RBC population, better describes RBC survival data than the random destruction or homogenous life-span models; and (3) the additional incorporation of random destruction patterns, although improving the description of the RBC survival data, does not appear to provide a marked improvement when describing clinical data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic allograft nephropathy, including chronic rejection, remains one of the major causes of renal allograft failure. Amongst other mediators, metzincins, such as matrix metalloproteinases (MMP), direct extracellular matrix metabolism and cell proliferation. Thus, we hypothesized, that these proteolytic enzymes are differentially regulated in chronic renal transplant rejection in rats and in human renal allograft nephropathy. Our studies demonstrated on the experimental level and in humans an overall up-regulation of MMP, tissue inhibitors of metalloproteinases (TIMP) and related enzymes as a result of rejection processes. Thus, metzincins may represent novel markers and therapeutic targets with respect to renal allograft rejection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Erythropoietin (EPO) and iron deficiency as causes of anemia in patients with limited renal function or end-stage renal disease are well addressed. The concomitant impairment of red blood cell (RBC) survival has been largely neglected. Properties of the uremic environment like inflammation, increased oxidative stress and uremic toxins seem to be responsible for the premature changes in RBC membrane and cytoskeleton. The exposure of antigenic sites and breakdown of the phosphatidylserine asymmetry promote RBC phagocytosis. While the individual response to treatment with EPO-stimulating agents (ESA) depends on both the RBC's lifespan and the production rate, uniform dosing algorithms do not meet that demand. The clinical use of mathematical models predicting ESA-induced changes in hematocrit might be greatly improved once independent estimates of RBC production rate and/or lifespan become available, thus making the concomitant estimation of both parameters unnecessary. Since heme breakdown by the hemoxygenase pathway results in carbon monoxide (CO) which is exhaled, a simple CO breath test has been used to calculate hemoglobin turnover and therefore RBC survival and lifespan. Future research will have to be done to validate and implement this method in patients with kidney failure. This will result in new insights into RBC kinetics in renal patients. Eventually, these findings are expected to improve our understanding of the hemoglobin variability in response to ESA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The efficacy of mammalian target of rapamycin (mTOR) inhibitors is currently tested in patients affected by autosomal dominant polycystic kidney disease. Treatment with mTOR inhibitors has been associated with numerous side effects. However, the renal-specific effect of mTOR inhibitor treatment cessation in polycystic kidney disease is currently unknown. Therefore, we compared pulse and continuous everolimus treatment in Han:SPRD rats. Four-week-old male heterozygous polycystic and wild-type rats were administered everolimus or vehicle by gavage feeding for 5 wk, followed by 7 wk without treatment, or continuously for 12 wk. Cessation of everolimus did not result in the appearance of renal cysts up to 7 wk postwithdrawal despite the reemergence of S6 kinase activity coupled with an overall increase in cell proliferation. Pulse everolimus treatment resulted in striking noncystic renal parenchymal enlargement and glomerular hypertrophy that was not associated with compromised kidney function. Both treatment regimens ameliorated kidney function, preserved the glomerular-tubular connection, and reduced proteinuria. Pulse treatment at an early age delays cyst development but leads to striking glomerular and parenchymal hypertrophy. Our data might have an impact when long-term treatment using mTOR inhibitors in patients with autosomal dominant polycystic kidney disease is being considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chronic kidney diseases including glomerulonephritis are often accompanied by acute or chronic inflammation that leads to an increase in extracellular matrix (ECM) production and subsequent glomerulosclerosis. Glomerulonephritis is one of the leading causes for end-stage renal failure with high morbidity and mortality, and there are still only a limited number of drugs for treatment available. In this MiniReview, we discuss the possibility of targeting sphingolipids, specifically the sphingosine kinase 1 (SphK1) and sphingosine 1-phosphate (S1P) pathway, as new therapeutic strategy for the treatment of glomerulonephritis, as this pathway was demonstrated to be dysregulated under disease conditions. Sphingosine 1-phosphate is a multifunctional signalling molecule, which was shown to influence several hallmarks of glomerulonephritis including mesangial cell proliferation, renal inflammation and fibrosis. Most importantly, the site of action of S1P determines the final effect on disease progression. Concerning renal fibrosis, extracellular S1P acts pro-fibrotic via activation of cell surface S1P receptors, whereas intracellular S1P was shown to attenuate the fibrotic response. Interference with S1P signalling by treatment with FTY720, an S1P receptor modulator, resulted in beneficial effects in various animal models of chronic kidney diseases. Also, sonepcizumab, a monoclonal anti-S1P antibody that neutralizes extracellular S1P, and a S1P-degrading recombinant S1P lyase are promising new strategies for the treatment of glomerulonephritis. In summary, especially due to the bifunctionality of S1P, the SphK1/S1P pathway provides multiple target sites for the treatment of chronic kidney diseases.