2 resultados para k nearest neighbour
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Background Using a unique, longitudinal survey that follows school-to-work transitions of pupils who participated in PISA 2000, this paper investigates adverse consequences, so-called scarring effects, of early unemployment among young adults who acquired vocational credentials in Switzerland. Methods As social, individual and contextual factors influence both early unemployment and later employment outcomes, taking into account endogeneity is of utmost importance when investigating scarring effects. In this regard we make use of nearest-neighbour propensity score matching and set up statistical control groups. Results Our results suggest that young adults who hold vocational credentials are more likely to be neither in employment nor in education, and to earn less and be more dissatisfied with their career progress later in work life than they would be, had they not experienced early unemployment. Conclusions We conclude that unemployment scarring also affects young adults with vocational credentials in a liberal labour market setting that otherwise allows for smooth school-to-work transitions. This finding runs counter to expectations that standardised vocational degrees, a liberal and flexible labour market structure, and predominantly short unemployment spells protect young skilled workers from scarring in case they happen to experience early career instability.
Resumo:
We present observations of total cloud cover and cloud type classification results from a sky camera network comprising four stations in Switzerland. In a comprehensive intercomparison study, records of total cloud cover from the sky camera, long-wave radiation observations, Meteosat, ceilometer, and visual observations were compared. Total cloud cover from the sky camera was in 65–85% of cases within ±1 okta with respect to the other methods. The sky camera overestimates cloudiness with respect to the other automatic techniques on average by up to 1.1 ± 2.8 oktas but underestimates it by 0.8 ± 1.9 oktas compared to the human observer. However, the bias depends on the cloudiness and therefore needs to be considered when records from various observational techniques are being homogenized. Cloud type classification was conducted using the k-Nearest Neighbor classifier in combination with a set of color and textural features. In addition, a radiative feature was introduced which improved the discrimination by up to 10%. The performance of the algorithm mainly depends on the atmospheric conditions, site-specific characteristics, the randomness of the selected images, and possible visual misclassifications: The mean success rate was 80–90% when the image only contained a single cloud class but dropped to 50–70% if the test images were completely randomly selected and multiple cloud classes occurred in the images.