2 resultados para juvenile habitat

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. Predation is a prime force of natural selection. Vulnerability to predation is typically highest early in life, hence effective antipredator defences should work already shortly after birth. Such early defences may be innate, transmitted through non-genetic parental effects or acquired by own early experience. 2. To understand potential joint effects of these sources of antipredator defences on pheno- typic expression, they should be manipulated within the same experiment. We investigated innate, parental and individual experience effects within a single experiment. Females of the African cichlid Simochromis pleurospilus were exposed to the offspring predator Ctenochromis horei or a benign species until spawning. Eggs and larvae were hand-reared, and larvae were then exposed to odour cues signalling the presence or absence of predators in a split-brood design. 3. Shortly after independence of maternal care, S. pleurospilus undergo a habitat shift from a deeper, adult habitat to a shallow juvenile habitat, a phase where young are thought to be par- ticularly exposed to predation risk. Thus, maternal effects induced by offspring predators pres- ent in the adult habitat should take effect mainly shortly after independence, whereas own experience and innate antipredator responses should shape behaviour and life history of S. pleurospilus during the later juvenile period. 4. We found that the manipulated environmental components independently affected different offspring traits. (i) Offspring of predator-exposed mothers grew faster during the first month of life and were thus larger at termination of maternal care, when the young migrate from the adult to the juvenile habitat. (ii) The offspring’s own experience shortly after hatching exerted lasting effects on predator avoidance behaviour. (iii) Finally, our results suggest that S. pleuro- spilus possess a genetically inherited ability to distinguish dangerous from benign species. 5. In S. pleurospilus, maternal effects were limited to a short but critical time window, when young undergo a niche shift. Instead, own environmental sampling of predation risk combined with an innate predisposition to correctly identify predators appears to prepare the young best for the environment, in which they grow up as juveniles.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relationships among animal form, function and performance are complex, and vary across environments. Therefore, it can be difficult to identify morphological and/or physiological traits responsible for enhancing performance in a given habitat. In fishes, differences in swimming performance across water flow gradients are related to morphological variation among and within species. However, physiological traits related to performance have been less well studied. We experimentally reared juvenile damselfish, Acanthochromis polyacanthus, under different water flow regimes to test 1) whether aspects of swimming physiology and morphology show plastic responses to water flow, 2) whether trait divergence correlates with swimming performance and 3) whether flow environment relates to performance differences observed in wild fish. We found that maximum metabolic rate, aerobic scope and blood haematocrit were higher in wave-reared fish compared to fish reared in low water flow. However, pectoral fin shape, which tends to correlate with sustained swimming performance, did not differ between rearing treatments or collection sites. Maximum metabolic rate was the best overall predictor of individual swimming performance; fin shape and fish total length were 3.3 and 3.7 times less likely than maximum metabolic rate to explain differences in critical swimming speed. Performance differences induced in fish reared in different flow environments were less pronounced than in wild fish but similar in direction. Our results suggest that exposure to water motion induces plastic physiological changes which enhance swimming performance in A. polyacanthus. Thus, functional relationships between fish morphology and performance across flow habitats should also consider differences in physiology.