25 resultados para job order production
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Offset printing is a common method to produce large amounts of printed matter. We consider a real-world offset printing process that is used to imprint customer-specific designs on napkin pouches. The production equipment used gives rise to various technological constraints. The planning problem consists of allocating designs to printing-plate slots such that the given customer demand for each design is fulfilled, all technological and organizational constraints are met and the total overproduction and setup costs are minimized. We formulate this planning problem as a mixed-binary linear program, and we develop a multi-pass matching-based savings heuristic. We report computational results for a set of problem instances devised from real-world data.
Resumo:
We present the third-order QCD prediction for the production of top antitop quark pairs in electron-positron collisions close to the threshold in the dominant S-wave state. We observe a significant reduction of the theoretical uncertainty and discuss the sensitivity to the top quark mass and width.
Resumo:
Non-perforating abomasal lesions are a considerable problem affecting more than half the population of veal calves. The objective of the present study was to assess the prevalence of pyloric and fundic abomasal lesions in Swiss veal calves at slaughter and to compare the occurrence of non-perforating abomasal lesions between two different production programs ('Naturafarm' and 'conventional'). 'Conventional'-production settings met the minimal standards as defined by the Swiss animal welfare legislation, whereas 'Naturafarm' production complied with increased animal welfare requirements. In order to identify risk factors for the development of abomasal lesions, information on management, housing, and feeding was obtained by a questionnaire. A total of 125 abomasa were randomly selected in one large abattoir. They were examined macroscopically, and the occurence of lesions in either the fundic or pyloric region of the abomasum was recorded separately. Animals raised in the 'conventional'-production setting revealed a significantly higher prevalence of lesions in the fundic part. Factors significantly affecting the prevalence of non-perforating lesions in the fundic part were the 'conventional'-production environment, including missing access to an outside pen, missing access to water and straw as the only roughage, feeding by bucket and the liquid milk by-product Protofit in combination with the powder Sprayfit.
Resumo:
The Green Revolution has enabled Asian countries to boost their crop production enormously. However, Africa has not benefitted from this agricultural revolution since it did not consider local, but important crops grown in the continent. In addition to their versatile adaptation to extreme environmental conditions, African indigenous crops provide income for subsistence farmers and serve as staple food for the vast majority of low-income consumers. These crops, which are composed of cereals, legumes, vegetables and root crops, are commonly known as underutilized or orphan crops. Recently, some of these under-researched crops have received the attention of the national and international research community, and modern improvement techniques including diverse genetic and genomic tools have been applied in order to boost their productivity. The major bottlenecks affecting the productivity of these crops are unimproved genetic traits such as low yield and poor nutritional status and environmental factors such as drought, weeds and pests. Hence, an agricultural revolution is needed to increase food production of these under-researched crops in order to feed the ever-increasing population in Africa. Here, we present both the benefits and drawbacks of major African crops, the efforts being made to improve them, and suggestions for some future directions.
Resumo:
The present study analyses transdisciplinary co-production of knowledge in the development of organic farming in Switzerland by using Fleck's theory of thought styles and thought collectives. Three different phases can be identified throughout the historical development. The initial phase lasting from the beginning of the 1920s to the early 1970s contains numerous characteristics of diverse well-established definitions and concepts of transdisciplinarity and represents a successful transdisciplinary process, which has not been perceived as such in the past and present scientific discussion. The second and third phases show an increasing segregation of thought collectives, caused by internal changes such as the establishment of specialised research institutions and external processes like agriculture policy and market development. These developments led to a decreasing degree of transdisciplinarity. We observe an ambiguous trend: the continuously growing and today well-established positive societal recognition of an initially rather little accepted newcomer movement is associated with the gradual loss of its very valuable forms of knowledge co-production and the related philosophical background. In order to maintain the various forms of transdisciplinary co-production of knowledge, one has to reflect not only their results or outcome but also the whole cooperation process, which has led to these results. The understanding of the historical development and characteristic features of knowledge co-production as presented in this study will help to reinforce transdisciplinary research in organic agriculture and research on transdisciplinarity in general.
Resumo:
During the second half of the 20th century untreated sewage released from housing and industry into natural waters led to a degradation of many freshwater lakes and reservoirs worldwide. In order to mitigate eutrophication, wastewater treatment plants, including Fe-induced phosphorus precipitation, were implemented throughout the industrialized world, leading to reoligotrophication in many freshwater lakes. To understand and assess the effects of reoligotrophication on primary productivity, we analyzed 28 years of 14C assimilation rates, as well as other biotic and abiotic parameters, such as global radiation, nutrient concentrations and plankton densities in peri-alpine Lake Lucerne, Switzerland. Using a simple productivity-light relationship, we estimated continuous primary production and discussed the relation between productivity and observed limnological parameters. Furthermore, we assessed the uncertainty of our modeling approach based on monthly 14C assimilation measurements using Monte Carlo simulations. Results confirm that monthly sampling of productivity is sufficient for identifying long-term trends in productivity and that conservation management has successfully improved water quality during the past three decades via reducing nutrients and primary production in the lake. However, even though nutrient concentrations have remained constant in recent years, annual primary production varies significantly from year to year. Despite the fact that nutrient concentrations have decreased by more than an order of magnitude, primary production has decreased only slightly. These results suggest that primary production correlates well to nutrients availability but meteorological conditions lead to interannual variability regardless of the trophic status of the lake. Accordingly, in oligotrophic freshwaters meteorological forcing may reduce productivity impacting on the entire food chain of the ecosystem.
Resumo:
Arguably, job satisfaction is one of the most important variables with regard to work. When explaining job satisfaction, research usually focuses on predictor variables in terms of levels but neglects growth rates. Therefore it remains unclear how potential predictors evolve over time and how their development affects job satisfaction. Using multivariate latent growth modeling in a study with 1145 young workers over five years, we analyzed how well job satisfaction is predicted a) by levels of situational (i.e., job control) and dispositional (i.e., Core Self-Evaluations (CSE)) factors and b) by growth per year of these predictors. Results showed both intercepts and slopes to be related to each other, suggesting a joint growth of job control and CSE during early careers. Job satisfaction after five years was best predicted by the slopes of job control (β = .31, p < .001) and CSE (β = .34, p < .01). These findings provide further longitudinal evidence for the role of situational as well as dispositional factors for predicting job satisfaction. In addition, growth rates per year were better predictors than initial levels. Furthermore, a lack of change in job control or CSE went along with a drop in job satisfaction, implying that young workers need to perceive things to be improving in order to increase, or at least maintain, their level of job satisfaction. In terms of theory, the relative importance of levels versus changes deserves more attention. In terms of practical implications, our results suggest a double emphasis on job design (i.e., granting sufficient, and increasing, control) and on personal development (e.g., through training) so that people experience a match between both. Finally, negative associations between initial levels and growth rates suggest that people are quite successful in achieving a reasonable fit between their job characteristics and their needs and goals.
Resumo:
Quantification of the volumes of sediment removed by rock–slope failure and debris flows and identification of their coupling and controls are pertinent to understanding mountain basin sediment yield and landscape evolution. This study captures a multi-decadal period of hillslope erosion and channel change following an extreme rock avalanche in 1961 in the Illgraben, a catchment prone to debris flows in the Swiss Alps. We analyzed photogrammetrically-derived datasets of hillslope and channel erosion and deposition along with climatic and seismic variables for a 43 year period from 1963 to 2005. Based on these analyses we identify and discuss (1) patterns of hillslope production, channel transfer and catchment sediment yield, (2) their dominant interactions with climatic and seismic variables, and (3) the nature of hillslope–channel coupling and implications for sediment yield and landscape evolution in this mountain basin. Our results show an increase in the mean hillslope erosion rate in the 1980s from 0.24 ± 0.01 m yr− 1 to 0.42 ± 0.03 m yr− 1 that coincided with a significant increase in air temperature and decrease in snow cover depth and duration, which we presume led to an increase in the exposure of the slopes to thermal weathering processes. The combination of highly fractured slopes close to the threshold angle for failure, and multiple potential triggering mechanisms, means that it is difficult to identify an individual control on slope failure. On the other hand, the rate of channel change was strongly related to variables influencing runoff. A period of particularly high channel erosion rate of 0.74 ± 0.02 m yr− 1 (1992–1998) coincided with an increase in the frequency and magnitude of intense rainfall events. Hillslope erosion exceeded channel erosion on average, indicative of a downslope-directed coupling relationship between hillslope and channel, and demonstrating the first order control of rock–slope failure on catchment sediment yield and landscape evolution.
Resumo:
Radiocarbon production, solar activity, total solar irradiance (TSI) and solar-induced climate change are reconstructed for the Holocene (10 to 0 kyr BP), and TSI is predicted for the next centuries. The IntCal09/SHCal04 radiocarbon and ice core CO2 records, reconstructions of the geomagnetic dipole, and instrumental data of solar activity are applied in the Bern3D-LPJ, a fully featured Earth system model of intermediate complexity including a 3-D dynamic ocean, ocean sediments, and a dynamic vegetation model, and in formulations linking radiocarbon production, the solar modulation potential, and TSI. Uncertainties are assessed using Monte Carlo simulations and bounding scenarios. Transient climate simulations span the past 21 thousand years, thereby considering the time lags and uncertainties associated with the last glacial termination. Our carbon-cycle-based modern estimate of radiocarbon production of 1.7 atoms cm−2 s−1 is lower than previously reported for the cosmogenic nuclide production model by Masarik and Beer (2009) and is more in-line with Kovaltsov et al. (2012). In contrast to earlier studies, periods of high solar activity were quite common not only in recent millennia, but throughout the Holocene. Notable deviations compared to earlier reconstructions are also found on decadal to centennial timescales. We show that earlier Holocene reconstructions, not accounting for the interhemispheric gradients in radiocarbon, are biased low. Solar activity is during 28% of the time higher than the modern average (650 MeV), but the absolute values remain weakly constrained due to uncertainties in the normalisation of the solar modulation to instrumental data. A recently published solar activity–TSI relationship yields small changes in Holocene TSI of the order of 1 W m−2 with a Maunder Minimum irradiance reduction of 0.85 ± 0.16 W m−2. Related solar-induced variations in global mean surface air temperature are simulated to be within 0.1 K. Autoregressive modelling suggests a declining trend of solar activity in the 21st century towards average Holocene conditions.
Resumo:
The dynamics of isolated-photon plus jet production in pp collisions at a centre-of-mass energy of 7 TeV has been studied with the ATLAS detector at the LHC using an integrated luminosity of 37 pb^-^1. Measurements of isolated-photon plus jet bin-averaged cross sections are presented as functions of photon transverse energy, jet transverse momentum and jet rapidity. In addition, the bin-averaged cross sections as functions of the difference between the azimuthal angles of the photon and the jet, the photon-jet invariant mass and the scattering angle in the photon-jet centre-of-mass frame have been measured. Next-to-leading-order QCD calculations are compared to the measurements and provide a good description of the data, except for the case of the azimuthal opening angle.
Resumo:
The production cross-section of B+ mesons is measured as a function of transverse momentum p T and rapidity y in proton-proton collisions at centre-of-mass energy root s = 7 TeV, using 2.4 fb(-1) of data recorded with the ATLAS detector at the Large Hadron Collider. The differential production cross-sections, determined in the range 9 GeV < p(T) < 120 GeV and vertical bar y vertical bar < 2.25, are compared to next-to-leading-order theoretical predictions.
Resumo:
A measurement of the ZZ production cross section in proton-proton collisions at root s = 7 TeV using data recorded by the ATLAS experiment at the Large Hadron Collider is presented. In a data sample corresponding to an integrated luminosity of 4.6 fb(-1) collected in 2011, events are selected that are consistent either with two Z bosons decaying to electrons or muons or with one Z boson decaying to electrons or muons and a second Z boson decaying to neutrinos. The ZZ((*)) -> l(+)l(-)l'(+)l'(-) and ZZ -> l(+)l(-) nu(nu) over bar cross sections are measured in restricted phase-space regions. These results are then used to derive the total cross section for ZZ events produced with both Z bosons in the mass range 66 to 116 GeV, sigma(tot)(ZZ) = 6.7 +/- 0.7 (stat.) (+0.4)(-0.3) (syst.) +/- 0.3 (lumi.) pb, which is consistent with the Standard Model prediction of 5.89(-0.18)(+0.22) pb calculated at next-to-leading order in QCD. The normalized differential cross sections in bins of various kinematic variables are presented. Finally, the differential event yield as a function of the transverse momentum of the leading Z boson is used to set limits on anomalous neutral triple gauge boson couplings in ZZ production.
Resumo:
The ATLAS experiment at the LHC has measured the production cross section of events with two isolated photons in the final state, in proton-proton collisions at root s = 7 TeV. The full data set collected in 2011, corresponding to an integrated luminosity of 4.9 fb(-1), is used. The amount of background, from hadronic jets and isolated electrons, is estimated with data-driven techniques and subtracted. The total cross section, for two isolated photons with transverse energies above 25 GeV and 22 GeV respectively, in the acceptance of the electromagnetic calorimeter (vertical bar eta vertical bar < 1.37 and 1.52 < vertical bar eta vertical bar 2.37) and with an angular separation Delta R > 0.4, is 44.0(-4.2)(+3.2) pb. The differential cross sections as a function of the di-photon invariant mass, transverse momentum, azimuthal separation, and cosine of the polar angle of the largest transverse energy photon in the Collins-Soper di-photon rest frame are also measured. The results are compared to the prediction of leading-order parton-shower and next-to-leading-order and next-to-next-to-leading-order parton-level generators.
Resumo:
Measurements of the production of jets of particles in association with a Z boson in pp collisions at root s = 7 TeV are presented, using data corresponding to an integrated luminosity of 4.6 fb(-1) collected by the ATLAS experiment at the Large Hadron Collider. Inclusive and differential jet cross sections in Z events, with Z decaying into electron or muon pairs, are measured for jets with transverse momentum p(T) > 30 GeV and rapidity vertical bar y vertical bar < 4.4. The results are compared to next-to-leading-order perturbative QCD calculations, and to predictions from different Monte Carlo generators based on leading-order and next-to-leading-order matrix elements supplemented by parton showers.