5 resultados para isotope distribution
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Stable oxygen isotope composition of atmospheric precipitation (δ18Op) was scrutinized from 39 stations distributed over Switzerland and its border zone. Monthly amount-weighted δ18Op values averaged over the 1995–2000 period showed the expected strong linear altitude dependence (−0.15 to −0.22‰ per 100 m) only during the summer season (May–September). Steeper gradients (~ −0.56 to −0.60‰ per 100 m) were observed for winter months over a low elevation belt, while hardly any altitudinal difference was seen for high elevation stations. This dichotomous pattern could be explained by the characteristically shallower vertical atmospheric mixing height during winter season and provides empirical evidence for recently simulated effects of stratified atmospheric flow on orographic precipitation isotopic ratios. This helps explain "anomalous" deflected altitudinal water isotope profiles reported from many other high relief regions. Grids and isotope distribution maps of the monthly δ18Op have been calculated over the study region for 1995–1996. The adopted interpolation method took into account both the variable mixing heights and the seasonal difference in the isotopic lapse rate and combined them with residual kriging. The presented data set allows a point estimation of δ18Op with monthly resolution. According to the test calculations executed on subsets, this biannual data set can be extended back to 1992 with maintained fidelity and, with a reduced station subset, even back to 1983 at the expense of faded reliability of the derived δ18Op estimates, mainly in the eastern part of Switzerland. Before 1983, reliable results can only be expected for the Swiss Plateau since important stations representing eastern and south-western Switzerland were not yet in operation.
Resumo:
Tungsten isotope compositions of magmatic iron meteorites yield ages of differentiation that are within ±2 Ma of the formation of CAIs, with the exception of IVB irons that plot to systematically less radiogenic compositions yielding erroneously old ages. Secondary neutron capture due to galactic cosmic ray (GCR) irradiation is known to lower the ε182W of iron meteorites, adequate correction of which requires a measure of neutron dosage which has not been available, thus far. The W, Os and Pt isotope systematics of 12 of the 13 known IVB iron meteorites were determined by MC-ICP-MS (W, Os, Pt) and TIMS (Os). On the same dissolutions that yield precise ε182W, stable Os and Pt isotopes were determined as in situ neutron dosimeters for empirical correction of the ubiquitous cosmic-ray induced burn-out of 182W in iron meteorites. The W isotope data reveal a main cluster with ε182W of ∼−3.6, but a much larger range than observed in previous studies including irons (Weaver Mountains and Warburton Range) that show essentially no cosmogenic effect on their ε182W. The IVB data exhibits resolvable negative anomalies in ε189Os (−0.6ε) and complementary ε190Os anomalies (+0.4ε) in Tlacotepec due to neutron capture on 189Os which has approximately the same neutron capture cross section as 182W, and captures neutrons to produce 190Os. The least irradiated IVB iron, Warburton Range, has ε189Os and ε190Os identical to terrestrial values. Similarly, Pt isotopes, which are presented as ε192Pt, ε194Pt and ε196Pt range from +4.4ε to +53ε, +1.54ε to −0.32ε and +0.73ε to −0.20ε, respectively, also identify Tlacotepec and Dumont as the most GCR-damaged samples. In W–Os and W–Pt isotope space, the correlated isotope data back-project toward a 0-epsilon value of ε192Pt, ε189Os and ε190Os from which a pre-GCR irradiation ε182W of −3.42±0.09 (2σ) is derived. This pre-GCR irradiation ε182W is within uncertainty of the currently accepted CAI initial ε182W. The Pt and Os isotope correlations in the IVB irons are in good agreement with a nuclear model for spherical irons undergoing GCR spallation, although this model over-predicts the change of ε182W by ∼2×, indicating a need for better W neutron capture cross section determinations. A nucleosynthetic effect in ε184W in these irons of −0.14±0.08 is confirmed, consistent with the presence of Mo and Ru isotope anomalies in IVB irons. The lack of a non-GCR Os isotope anomaly in these irons requires more complex explanations for the production of W, Ru and Mo anomalies than nebular heterogeneity in the distribution of s-process to r-process nuclides.
Resumo:
Karst aquifers are known for their wide distribution of water transfer velocities. From this observation, a multiple geochemical tracer approach seems to be particularly well suited to provide a significant assessment of groundwater flows, but the choice of adapted tracers is essential. In this study, several common tracers in karst aquifers such as physicochemical parameters, major ions, stable isotopes, and d13C to more specific tracers such as dating tracers – 14C, 3H, 3H–3He, CFC-12, SF6 and 85Kr, and 39Ar – were used, in a fractured karstic carbonated aquifer located in Burgundy (France). The information carried by each tracer and the best sampling strategy are compared on the basis of geochemical monitoring done during several recharge events and over longer time periods (months to years). This study’s results demonstrate that at the seasonal and recharge event time scale, the variability of concentrations is low for most tracers due to the broad spectrum of groundwater mixings. The tracers used traditionally for the study of karst aquifers, i.e., physicochemical parameters and major ions, efficiently describe hydrological processes such as the direct and differed recharge, but require being monitored at short time steps during recharge events to be maximized. From stable isotopes, tritium, and Cl� contents, the proportion of the fast direct recharge by the largest porosity was estimated using a binary mixing model. The use of tracers such as CFC-12, SF6, and 85Kr in karst aquifers provides additional information, notably an estimation of apparent age, but they require good preliminary knowledge of the karst system to interpret the results suitably. The CFC-12 and SF6 methods efficiently determine the apparent age of baseflow, but it is preferable to sample the groundwater during the recharge event. Furthermore, these methods are based on different assumptions such as regional enrichment in atmospheric SF6, excess air, and flow models among others. 85Kr and 39Ar concentrations can potentially provide a more direct estimation of groundwater residence time. Conversely, the 3H–3He method is inefficient in the karst aquifer for dating due to 3He degassing.
Resumo:
We present a barium (Ba) isotope fractionation study of marine biogenic carbonates (aragonitic corals). The major aim is to provide first constraints on the Ba isotope fractionation between modern surface sea water and coral skele- ton. Mediterranean surface sea water was found to be enriched in the heavy Ba isotopes compared to previously reported values for marine open ocean authi- genic and terrestrial minerals. In aquarium experiments with a continuous sup- ply of Mediterranean surface water, the Ba isotopic composition of the bulk sample originating from cultured, aragonitic scleractinian corals (d137/134Ba between +0.16 +/- 0.12permil and +0.41 +/-0.12permil) were isotopically identical or lighter than that of the ambient Mediterranean surface sea water (d137/134Ba = +0.42 +/- 0.07permil, 2SD), which corresponds to an empirical maximum value of Ba isotope fractionation of D137/134Bacoral-seawater = -0.26 +/- 0.14permil at 25°C. This maximum Ba isotope fractionation is close and identical in direction to previous results from inorganic precipitation experiments with aragonite- structured pure BaCO3 (witherite). The variability in measured Ba concentrations of the cultured corals is at odds with a uniform distribution coefficient, DBa/Ca, thus indicating stronger vital effects on isotope than element discrimination. This observation supports the hypothesis that the Ba isotopic compositions of these corals do not result from simple equilibrium between the skeleton and the bulk sea water. Complementary coral samples from natural settings (tropical shallow-water corals from the Bahamas and Florida and cold- water corals from the Norwegian continental shelf) show an even wider range in d137/134Ba values (+0.14 +/- 0.08permil and +0.77 +/- 0.11permil), most probably due to additional spatial and/or temporal sea water heterogeneity, as indicated by recent publications.