11 resultados para ipsilesional, destreza
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Unilateral damage to the labyrinth and the vestibular nerve cause rotational vertigo, postural imbalance, oculomotor disorders and spatial disorientation. Electrophysiological investigations in animals revealed that such deficits are partly due to imbalanced spontaneous activity and sensitivity to motion in neurons located in the ipsilesional and contralesional vestibular nuclei. Neurophysiological reorganizations taking place in the vestibular nuclei are the basis of the decline of the symptoms over time, a phenomenon known as vestibular compensation. Vestibular compensation is facilitated by motor activity and sensory experience, and current rehabilitation programs favor physical activity during the acute stage of a unilateral vestibular loss. Unfortunately, vestibular-defective patients tend to develop strategies in order to avoid movements causing imbalance and nausea (in particular body movements towards the lesioned side), which impedes vestibular compensation. Neuroanatomical evidence suggests a cortical control of postural and oculomotor reflexes based on corticofugal projections to the vestibular nuclei and, therefore, the possibility to manipulate vestibular functions through top-down mechanisms. Based on evidence from neuroimaging studies showing that imagined whole-body movements can activate part of the vestibular cortex, we propose that mental imagery of whole-body rotations to the lesioned and to the healthy side will help rebalancing the activity in the ipsilesional and contralesional vestibular nuclei. Whether imagined whole-body rotations can improve vestibular compensation could be tested in a randomized controlled study in such patients beneficiating, or not, from a mental imagery training. If validated, this hypothesis will help developing a method contributing to reduce postural instability and falls in vestibular-defective patients. Imagined whole-body rotations thus could provide a simple, safe, home-based and self-administered therapeutic method with the potential to overcome the inconvenience related to physical movements.
Resumo:
Vascular endothelial growth factor (VEGF) has potent angiogenic and neuroprotective effects in the ischemic brain. Its effect on axonal plasticity and neurological recovery in the post-acute stroke phase was unknown. Using behavioral tests combined with anterograde tract tracing studies and with immunohistochemical and molecular biological experiments, we examined effects of a delayed i.c.v. delivery of recombinant human VEGF(165), starting 3 days after stroke, on functional neurological recovery, corticorubral plasticity and inflammatory brain responses in mice submitted to 30 min of middle cerebral artery occlusion. We herein show that the slowly progressive functional improvements of motor grip strength and coordination, which are induced by VEGF, are accompanied by enhanced sprouting of contralesional corticorubral fibres that branched off the pyramidal tract in order to cross the midline and innervate the ipsilesional parvocellular red nucleus. Infiltrates of CD45+ leukocytes were noticed in the ischemic striatum of vehicle-treated mice that closely corresponded to areas exhibiting Iba-1+ activated microglia. VEGF attenuated the CD45+ leukocyte infiltrates at 14 but not 30 days post ischemia and diminished the microglial activation. Notably, the VEGF-induced anti-inflammatory effect of VEGF was associated with a downregulation of a broad set of inflammatory cytokines and chemokines in both brain hemispheres. These data suggest a link between VEGF's immunosuppressive and plasticity-promoting actions that may be important for successful brain remodeling. Accordingly, growth factors with anti-inflammatory action may be promising therapeutics in the post-acute stroke phase.
Resumo:
Vascular endothelial growth factor (VEGF) is a potent angiogenic factor, which also has neuroprotective activity. In view of these dual actions on vessels and neurons, we were interested whether VEGF promotes long distance axonal plasticity in the ischemic brain. Herein, we show that VEGF promotes neurological stroke recovery in mice when delivered in a delayed way starting 3 days after middle cerebral artery occlusion. Using anterograde tract-tracing experiments that we combined with histochemical and molecular biological studies, we demonstrate that although VEGF promoted angiogenesis predominantly in the ischemic hemisphere, pronounced axonal sprouting was induced by VEGF in the contralesional, but not the ipsilesional corticobulbar system. Corticobulbar plasticity was accompanied by the deactivation of the matrix metalloproteinase MMP9 in the lesioned hemisphere and the transient downregulation of the axonal growth inhibitors NG2 proteoglycan and brevican and the guidance molecules ephrin B1/2 in the contralesional hemisphere. The regulation of matrix proteinases, growth inhibitors, and guidance molecules offers insights how brain plasticity is controlled in the ischemic brain.
Resumo:
The cardinal feature of spatial neglect is severely impaired exploration of the contralesional space, a failure resulting in unawareness of many contralesional stimuli. This deficit is exacerbated by a reflexive attentional bias toward ipsilesional items. Here we show that, in addition to these spatially lateralized failures, neglect patients also exhibit a severe bias favouring stimuli presented at fixation. We tested neglect patients and matched healthy and right-hemisphere damaged patients without neglect in a task requiring saccade execution to targets in the left or right hemifield. Targets were presented alone or simultaneously with a distracter that appeared in the same hemifield, in the opposite hemifield, or at fixation. We found two fundamental biases in saccade initiation of neglect patients: irrelevant distracters presented in the preserved hemifield tended to capture gaze reflexively, resulting in a large number of saccades erroneously directed toward the distracter. Additionally, distracters presented at fixation severely disrupted saccade initiation irrespective of saccade direction, leading to disproportionately increased latencies of left and right saccades. This latency increase was specific to oculomotor responses of neglect patients and was not observed when a manual response was required. These results show that, in addition to their failure to inhibit reflexive glances toward ipsilesional items neglect patients exhibit a strong oculomotor bias favouring fixated stimuli. We conclude that impaired initiation of saccades in any direction contributes to the deficits of spatial exploration that characterize spatial neglect.
Resumo:
When we actively explore the visual environment, our gaze preferentially selects regions characterized by high contrast and high density of edges, suggesting that the guidance of eye movements during visual exploration is driven to a significant degree by perceptual characteristics of a scene. Converging findings suggest that the selection of the visual target for the upcoming saccade critically depends on a covert shift of spatial attention. However, it is unclear whether attention selects the location of the next fixation uniquely on the basis of global scene structure or additionally on local perceptual information. To investigate the role of spatial attention in scene processing, we examined eye fixation patterns of patients with spatial neglect during unconstrained exploration of natural images and compared these to healthy and brain-injured control participants. We computed luminance, colour, contrast, and edge information contained in image patches surrounding each fixation and evaluated whether they differed from randomly selected image patches. At the global level, neglect patients showed the characteristic ipsilesional shift of the distribution of their fixations. At the local level, patients with neglect and control participants fixated image regions in ipsilesional space that were closely similar with respect to their local feature content. In contrast, when directing their gaze to contralesional (impaired) space neglect patients fixated regions of significantly higher local luminance and lower edge content than controls. These results suggest that intact spatial attention is necessary for the active sampling of local feature content during scene perception.
Resumo:
Preclinical studies using animal models have shown that grey matter plasticity in both perilesional and distant neural networks contributes to behavioural recovery of sensorimotor functions after ischaemic cortical stroke. Whether such morphological changes can be detected after human cortical stroke is not yet known, but this would be essential to better understand post-stroke brain architecture and its impact on recovery. Using serial behavioural and high-resolution magnetic resonance imaging (MRI) measurements, we tracked recovery of dexterous hand function in 28 patients with ischaemic stroke involving the primary sensorimotor cortices. We were able to classify three recovery subgroups (fast, slow, and poor) using response feature analysis of individual recovery curves. To detect areas with significant longitudinal grey matter volume (GMV) change, we performed tensor-based morphometry of MRI data acquired in the subacute phase, i.e. after the stage compromised by acute oedema and inflammation. We found significant GMV expansion in the perilesional premotor cortex, ipsilesional mediodorsal thalamus, and caudate nucleus, and GMV contraction in the contralesional cerebellum. According to an interaction model, patients with fast recovery had more perilesional than subcortical expansion, whereas the contrary was true for patients with impaired recovery. Also, there were significant voxel-wise correlations between motor performance and ipsilesional GMV contraction in the posterior parietal lobes and expansion in dorsolateral prefrontal cortex. In sum, perilesional GMV expansion is associated with successful recovery after cortical stroke, possibly reflecting the restructuring of local cortical networks. Distant changes within the prefrontal-striato-thalamic network are related to impaired recovery, probably indicating higher demands on cognitive control of motor behaviour.
Resumo:
BACKGROUND: Higher visual functions can be defined as cognitive processes responsible for object recognition, color and shape perception, and motion detection. People with impaired higher visual functions after unilateral brain lesion are often tested with paper pencil tests, but such tests do not assess the degree of interaction between the healthy brain hemisphere and the impaired one. Hence, visual functions are not tested separately in the contralesional and ipsilesional visual hemifields. METHODS: A new measurement setup, that involves real-time comparisons of shape and size of objects, orientation of lines, speed and direction of moving patterns, in the right or left visual hemifield, has been developed. The setup was implemented in an immersive environment like a hemisphere to take into account the effects of peripheral and central vision, and eventual visual field losses. Due to the non-flat screen of the hemisphere, a distortion algorithm was needed to adapt the projected images to the surface. Several approaches were studied and, based on a comparison between projected images and original ones, the best one was used for the implementation of the test. Fifty-seven healthy volunteers were then tested in a pilot study. A Satisfaction Questionnaire was used to assess the usability of the new measurement setup. RESULTS: The results of the distortion algorithm showed a structural similarity between the warped images and the original ones higher than 97%. The results of the pilot study showed an accuracy in comparing images in the two visual hemifields of 0.18 visual degrees and 0.19 visual degrees for size and shape discrimination, respectively, 2.56° for line orientation, 0.33 visual degrees/s for speed perception and 7.41° for recognition of motion direction. The outcome of the Satisfaction Questionnaire showed a high acceptance of the battery by the participants. CONCLUSIONS: A new method to measure higher visual functions in an immersive environment was presented. The study focused on the usability of the developed battery rather than the performance at the visual tasks. A battery of five subtasks to study the perception of size, shape, orientation, speed and motion direction was developed. The test setup is now ready to be tested in neurological patients.
Resumo:
OBJECTIVE Sleep disruption in the acute phase after stroke has detrimental effects on recovery in both humans and animals. Conversely, the effect of sleep promotion remains unclear. Baclofen (Bac) is a known non-rapid eye movement (NREM) sleep-promoting drug in both humans and animals. The aim of this study was to investigate the effect of Bac on stroke recovery in a rat model of focal cerebral ischemia (isch). METHODS Rats, assigned to three experimental groups (Bac/isch, saline/isch, or Bac/sham), were injected twice daily for 10 consecutive days with Bac or saline, starting 24 h after induction of stroke. The sleep-wake cycle was assessed by EEG recordings and functional motor recovery by single pellet reaching test (SPR). In order to identify potential neuroplasticity mechanisms, axonal sprouting and neurogenesis were evaluated. Brain damage was assessed by Nissl staining. RESULTS Repeated Bac treatment after ischemia affected sleep, motor function, and neuroplasticity, but not the size of brain damage. NREM sleep amount was increased significantly during the dark phase in Bac/isch compared to the saline/isch group. SPR performance dropped to 0 immediately after stroke and was recovered slowly thereafter in both ischemic groups. However, Bac-treated ischemic rats performed significantly better than saline-treated animals. Axonal sprouting in the ipsilesional motor cortex and striatum, and neurogenesis in the peri-infarct region were significantly increased in Bac/isch group. CONCLUSION Delayed repeated Bac treatment after stroke increased NREM sleep and promoted both neuroplasticity and functional outcome. These data support the hypothesis of the role of sleep as a modulator of poststroke recovery.
Resumo:
3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors are widely used for secondary stroke prevention. Besides their lipid-lowering activity, pleiotropic effects on neuronal survival, angiogenesis, and neurogenesis have been described. In view of these observations, we were interested whether HMG-CoA reductase inhibition in the post-acute stroke phase promotes neurological recovery, peri-lesional, and contralesional neuronal plasticity. We examined effects of the HMG-CoA reductase inhibitor rosuvastatin (0.2 or 2.0 mg/kg/day i.c.v.), administered starting 3 days after 30 min of middle cerebral artery occlusion for 30 days. Here, we show that rosuvastatin treatment significantly increased the grip strength and motor coordination of animals, promoted exploration behavior, and reduced anxiety. It was associated with structural remodeling of peri-lesional brain tissue, reflected by increased neuronal survival, enhanced capillary density, and reduced striatal and corpus callosum atrophy. Increased sprouting of contralesional pyramidal tract fibers crossing the midline in order to innervate the ipsilesional red nucleus was noticed in rosuvastatin compared with vehicle-treated mice, as shown by anterograde tract tracing experiments. Western blot analysis revealed that the abundance of HMG-CoA reductase was increased in the contralesional hemisphere at 14 and 28 days post-ischemia. Our data support the idea that HMG-CoA reductase inhibition promotes brain remodeling and plasticity far beyond the acute stroke phase, resulting in neurological recovery.
Resumo:
AIM To describe structural covariance networks of gray matter volume (GMV) change in 28 patients with first-ever stroke to the primary sensorimotor cortices, and to investigate their relationship to hand function recovery and local GMV change. METHODS Tensor-based morphometry maps derived from high-resolution structural images were subject to principal component analyses to identify the networks. We calculated correlations between network expression and local GMV change, sensorimotor hand function and lesion volume. To verify which of the structural covariance networks of GMV change have a significant relationship to hand function, we performed an additional multivariate regression approach. RESULTS Expression of the second network, explaining 9.1% of variance, correlated with GMV increase in the medio-dorsal (md) thalamus and hand motor skill. Patients with positive expression coefficients were distinguished by significantly higher GMV increase of this structure during stroke recovery. Significant nodes of this network were located in md thalamus, dorsolateral prefrontal cortex, and higher order sensorimotor cortices. Parameter of hand function had a unique relationship to the network and depended on an interaction between network expression and lesion volume. Inversely, network expression is limited in patients with large lesion volumes. CONCLUSION Chronic phase of sensorimotor cortical stroke has been characterized by a large scale co-varying structural network in the ipsilesional hemisphere associated specifically with sensorimotor hand skill. Its expression is related to GMV increase of md thalamus, one constituent of the network, and correlated with the cortico-striato-thalamic loop involved in control of motor execution and higher order sensorimotor cortices. A close relation between expression of this network with degree of recovery might indicate reduced compensatory resources in the impaired subgroup.
Resumo:
OBJECTIVE Vestibular neuritis is often mimicked by stroke (pseudoneuritis). Vestibular eye movements help discriminate the two conditions. We report vestibulo-ocular reflex (VOR) gain measures in neuritis and stroke presenting acute vestibular syndrome (AVS). METHODS Prospective cross-sectional study of AVS (acute continuous vertigo/dizziness lasting >24 h) at two academic centers. We measured horizontal head impulse test (HIT) VOR gains in 26 AVS patients using a video HIT device (ICS Impulse). All patients were assessed within 1 week of symptom onset. Diagnoses were confirmed by clinical examinations, brain magnetic resonance imaging with diffusion-weighted images, and follow-up. Brainstem and cerebellar strokes were classified by vascular territory-posterior inferior cerebellar artery (PICA) or anterior inferior cerebellar artery (AICA). RESULTS Diagnoses were vestibular neuritis (n = 16) and posterior fossa stroke (PICA, n = 7; AICA, n = 3). Mean HIT VOR gains (ipsilesional [standard error of the mean], contralesional [standard error of the mean]) were as follows: vestibular neuritis (0.52 [0.04], 0.87 [0.04]); PICA stroke (0.94 [0.04], 0.93 [0.04]); AICA stroke (0.84 [0.10], 0.74 [0.10]). VOR gains were asymmetric in neuritis (unilateral vestibulopathy) and symmetric in PICA stroke (bilaterally normal VOR), whereas gains in AICA stroke were heterogeneous (asymmetric, bilaterally low, or normal). In vestibular neuritis, borderline gains ranged from 0.62 to 0.73. Twenty patients (12 neuritis, six PICA strokes, two AICA strokes) had at least five interpretable HIT trials (for both ears), allowing an appropriate classification based on mean VOR gains per ear. Classifying AVS patients with bilateral VOR mean gains of 0.70 or more as suspected strokes yielded a total diagnostic accuracy of 90%, with stroke sensitivity of 88% and specificity of 92%. CONCLUSION Video HIT VOR gains differ between peripheral and central causes of AVS. PICA strokes were readily separated from neuritis using gain measures, but AICA strokes were at risk of being misclassified based on VOR gain alone.