2 resultados para ionization-induced defocusing

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Trichloroethylene (TCE)-induced liver toxicity and carcinogenesis is believed to be mediated in part by activation of the peroxisome proliferator-activated receptor α (PPARα). However, the contribution of the two TCE metabolites, dichloroacetate (DCA) and trichloroacetate (TCA) to the toxicity of TCE, remains unclear. The aim of the present study was to determine the metabolite profiles in serum and urine upon exposure of mice to TCE, to aid in determining the metabolic response to TCE exposure and the contribution of DCA and TCA to TCE toxicity. C57BL/6 mice were administered TCE, TCA, or DCA, and urine and serum subjected to ultra-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOFMS)-based global metabolomics analysis. The ions were identified through searching metabolomics databases and by comparison with authentic standards, and quantitated using multiple reactions monitoring. Quantitative polymerase chain reaction of mRNA, biochemical analysis, and liver histology were also performed. TCE exposure resulted in a decrease in urine of metabolites involved in fatty acid metabolism, resulting from altered expression of PPARα target genes. TCE treatment also induced altered phospholipid homeostasis in serum, as revealed by increased serum lysophosphatidylcholine 18:0 and 18:1, and phosphatidylcholine metabolites. TCA administration revealed similar metabolite profiles in urine and serum upon TCE exposure, which correlated with a more robust induction of PPARα target gene expression associated with TCA than DCA treatment. These data show the metabolic response to TCE exposure and demonstrate that TCA is the major contributor to TCE-induced metabolite alterations observed in urine and serum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In hemodialysis patients, radiographic imaging with iodinated contrast medium (ICM) application plays a central role in the diagnosis and/or follow-up of disease-related conditions. Therefore, safety aspects concerning ICM administration and radiation exposure have a great impact on this group of patients. Current hardware and software improvements including the design and synthesis of modern contrast compounds allow the use of very small amounts of ICM in concert with low radiation exposure. Undesirable ICM side effects are divided into type A (predictable reactions such as heat feeling, headache, and contrast-induced acute kidney injury, for example) and type B (nonpredictable or hypersensitivity) reactions; this chapter deals with the latter. The first onset cannot be prevented. To prevent hypersensitivity upon reexposure of ICM, an allergological workup is recommended. If this is not possible and ICM is necessary, the patient should receive a premedication (H1 antihistamine with or without corticosteroids). Current imaging hardware and software improvements (e.g. such as additional filtration of the X-ray beam) allow the use of very small amount of ICM and small X-ray doses. Proper communication among the team involved in the treatment of a patient may allow to apply imaging protocols and efficient imaging strategies limiting radiation exposure to a minimum. Practical recommendations will guide the reader how to use radiation and ICM efficiently to improve both patient and staff safety.