3 resultados para ionic liquids, acidity

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The rate constants of simple electron transfer (ET) reactions in room temperature ionic liquids (ILs) available now are rather high, typically at the edge of experimental accuracy. To consider ET phenomena in these media in view of theory developed earlier for molecular solvents, it is crucial to provide quantitative comparison of experimental kinetic data for certain reactions. We report this comparison for ferrocene/ferrocenium reaction. The ET distance is fixed by Au surface modification by alkanethiol self-assembled monolayers, which were characterized by in situ scanning tunneling microscopy. The dependence of ln kapp on barrier thickness in the range of ca. 6–20 Å is linear, with a slope typical for the same plots in aqueous media. This result confirms diabatic mode of Fc oxidation at long distance. The data for shorter ET distances point to the adiabatic regime of ET at a bare gold surface, although more detailed computational studies are required to justify this conclusion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A better understanding of the mechanisms by which most focal epileptic seizures stop spontaneously within a few minutes would be of highest importance, because they could potentially help to improve existing and develop novel therapeutic measures for seizure control. Studies devoted to unraveling mechanisms of seizure termination often take one of the two following approaches. The first approach focuses on metabolic mechanisms such as ionic concentrations, acidity, or neuromodulator release, studying how they are dependent on, and in turn affect changes of neuronal activity. The second approach uses quantitative tools to derive functional networks from electrophysiological recordings and analyzes these networks with mathematical methods, without focusing on actual details of cell biology. In this chapter, we summarize key results obtained by both of these approaches and attempt to show that they are complementary and equally necessary in our aim to gain a better understanding of seizure termination.