4 resultados para ionic composition

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The molecular and ionic composition of vapor over erbium tribromide sublimed from the Knudsen effusion cell and the open surface of a single crystal was studied by high-temperature mass spectrometry. The partial pressures of ErBr3 and Er2Br6 molecules in saturated vapor and the ratio between their sublimation coefficients under free vaporization conditions were determined. The enthalpies and activation energies of sublimation of ErBr3 crystals in the form of monomers and dimers were calculated. The emission of and Er2 was recorded in studies of ionic sublimation in both modes. The enthalpies of formation of gas molecules and ions were determined.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The molecular and ionic composition of saturated vapor over lanthanum triiodide was studied by Knudsen effusion mass spectrometry. The (LaI3)n molecules (n = 1–3) and the [I(LaI3)n]− ions (n = 0–4) were observed. The partial pressures of the molecules were determined and the enthalpies of sublimation, ΔsH° (298.15 K) in kJ mol−1, in the form of monomers (304 ± 7), dimers (428 ± 25), and trimers (455 ± 50) were obtained by the second and third laws of thermodynamics. The enthalpy of formation, ΔfH° (298.15 K) in kJ mol−1, of the LaI3 (−376 ± 10), La2I6 (−932 ± 25), La3I9 (−1585 ± 50) molecules and the LaI4− (−841 ± 24), La2I7− (−1486 ± 32) ions were determined. The electron work function, φe = 3.5 ± 0.3 eV, for the LaI3 crystal was calculated from the thermochemical cycle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A CE system featuring an array of 16 contactless conductivity detectors was constructed. The detectors were arranged along 70 cm length of a capillary with 100 cm total length and allow the monitoring of separation processes. As the detectors cannot be accommodated on a conventional commercial instrument, a purpose built set-up employing a sequential injection manifold had to be employed for automation of the fluid handling. Conductivity measurements can be considered universal for electrophoresis and thus any changes in ionic composition can be monitored. The progress of the separation of Na(+) and K(+) is demonstrated. The potential of the system to the study of processes in CZE is shown in two examples. The first demonstrates the differences in the developments of peaks originating from a sample plug with a purely aqueous background to that of a plug containing the analyte ions in the buffer. The second example visualizes the opposite migration of cations and anions from a sample plug that had been placed in the middle of the capillary.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

RATIONALE The vaporization of Sm, Eu, and Yb tri- and dibromides is accompanied by decomposition and disproportionation reactions. These result in complex vapor compositions whose analysis is an intricate problem for experimentalists. Approaches have been developed to interpret mass spectra and accurately determine the vapor composition of thermally unstable compounds. METHODS A sector type magnet instrument was used. A combined ion source allowed the study of both the molecular and ionic vapor compositions in the electron ionization (EI) and the thermionic emission (TE) modes. The methodological approaches were based on a joint analysis of the ionization efficiency functions, the temperature and time dependences of the ion currents, and special mathematical data evaluation. RESULTS The vaporization of SmBr3, YbBr3, SmBr2, EuBr2, and YbBr2 was studied in the temperature range of 850–1300 K. An initial stage of incongruent vaporization was observed in the case of the tribromides, SmBr2, and YbBr2. This eventually changed to a congruent vaporization stage. Various neutral (Ln, Br, Br2, LnBr, LnBr2, LnBr3, Ln2Br4, Ln2Br5, and Ln2Br6) and charged (Br–, LnBr3–, LnBr4–) species were detected at different vaporization stages. CONCLUSIONS The quantitative vapor composition of Sm, Eu, and Yb tri- and dibromides was determined. It was found that only EuBr2 was stable in the studied temperature range. The developed approaches can be useful in the case of other thermally unstable compounds.