42 resultados para intracellular target

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Human African trypanosomiasis (HAT), a major parasitic disease spread in Africa, urgently needs novel targets and new efficacious chemotherapeutic agents. Recently, we discovered that 4-[5-(4-phenoxyphenyl)-2H-pyrazol-3-yl]morpholine (compound 1) exhibits specific antitrypanosomal activity with an IC(50) of 1.0 microM on Trypanosoma brucei rhodesiense (T. b. rhodesiense), the causative agent of the acute form of HAT. METHODOLOGY/PRINCIPAL FINDINGS: In this work we show adenosine kinase of T. b. rhodesiense (TbrAK), a key enzyme of the parasite purine salvage pathway which is vital for parasite survival, to be the putative intracellular target of compound 1 using a chemical proteomics approach. This finding was confirmed by RNA interference experiments showing that down-regulation of adenosine kinase counteracts compound 1 activity. Further chemical validation demonstrated that compound 1 interacts specifically and tightly with TbrAK with nanomolar affinity, and in vitro activity measurements showed that compound 1 is an enhancer of TbrAK activity. The subsequent kinetic analysis provided strong evidence that the observed hyperactivation of TbrAK is due to the abolishment of the intrinsic substrate-inhibition. CONCLUSIONS/SIGNIFICANCE: The results suggest that TbrAK is the putative target of this compound, and that hyperactivation of TbrAK may represent a novel therapeutic strategy for the development of trypanocides.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The increasing demand for novel anti-parasitic drugs due to resistance formation to well-established chemotherapeutically important compounds has increased the demands for a better understanding of the mechanism(s) of action of existing drugs and of drugs in development. While different approaches have been developed to identify the targets and thus mode of action of anti-parasitic compounds, it has become clear that many drugs act not only on one, but possibly several parasite molecules or even pathways. Ideally, these targets are not present in any cells of the host. In the case of apicomplexan parasites, the unique apicoplast, provides a suitable target for compounds binding to DNA or ribosomal RNA of prokaryotic origin. In the case of intracellular pathogens, a given drug might not only affect the pathogen by directly acting on parasite-associated targets, but also indirectly, by altering the host cell physiology. This in turn could affect the parasite development and lead to parasite death. In this review, we provide an overview of strategies for target identification, and present examples of selected drug targets, ranging from proteins to nucleic acids to intermediary metabolism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The mechanism of viral persistence, the driving force behind the chronic progression of inflammatory demyelination in canine distemper virus (CDV) infection, is associated with non-cytolytic viral cell-to-cell spread. Here, we studied the molecular mechanisms of viral spread of a recombinant fluorescent protein-expressing virulent CDV in primary canine astrocyte cultures. Time-lapse video microscopy documented that CDV spread was very efficient using cell processes contacting remote target cells. Strikingly, CDV transmission to remote cells could occur in less than 6 h, suggesting that a complete viral cycle with production of extracellular free particles was not essential in enabling CDV to spread in glial cells. Titration experiments and electron microscopy confirmed a very low CDV particle production despite higher titers of membrane-associated viruses. Interestingly, confocal laser microscopy and lentivirus transduction indicated expression and functionality of the viral fusion machinery, consisting of the viral fusion (F) and attachment (H) glycoproteins, at the cell surface. Importantly, using a single-cycle infectious recombinant H-knockout, H-complemented virus, we demonstrated that H, and thus potentially the viral fusion complex, was necessary to enable CDV spread. Furthermore, since we could not detect CD150/SLAM expression in brain cells, the presence of a yet non-identified glial receptor for CDV was suggested. Altogether, our findings indicate that persistence in CDV infection results from intracellular cell-to-cell transmission requiring the CDV-H protein. Viral transfer, happening selectively at the tip of astrocytic processes, may help the virus to cover long distances in the astroglial network, "outrunning" the host's immune response in demyelinating plaques, thus continuously eliciting new lesions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pore-forming (poly)peptides originating from invading pathogens cause plasma membrane damage in target cells, with consequences as diverse as proliferation or cell death. However, the factors that define the outcome remain unknown. We show that in cells maintaining an intracellular Ca(2+) concentration [Ca(2+)](i) below a critical threshold of 10 microM, repair mechanisms seal off 'hot spots' of Ca(2+) entry and shed them in the form of microparticles, leading to [Ca(2+)](i) reduction and cell recovery. Cells that are capable of preventing an elevation of [Ca(2+)](i) above the critical concentration, yet are unable to complete plasma membrane repair, enter a prolonged phase of [Ca(2+)](i) oscillations, accompanied by a continuous shedding of microparticles. When [Ca(2+)](i) exceeds the critical concentration, an irreversible formation of ceramide platforms within the plasma membrane and their internalisation drives the dying cells beyond the 'point of no return'. These findings show that the extent of [Ca(2+)](i) elevation determines the fate of targeted cells and establishes how different Ca(2+)-dependent mechanisms facilitate either cell survival or death.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hint2, one of the five members of the superfamily of the histidine triad AMP-lysine hydrolase proteins, is expressed in mitochondria of various cell types. In human adrenocarcinoma cells, Hint2 modulates Ca2+ handling by mitochondria. As Hint2 is highly expressed in hepatocytes, we investigated if this protein affects Ca2+ dynamics in this cell type. We found that in hepatocytes isolated from Hint2−/− mice, the frequency of Ca2+ oscillations induced by 1 μM noradrenaline was 150% higher than in the wild-type. Using spectrophotometry, we analyzed the rates of Ca2+ pumping in suspensions of mitochondria prepared from hepatocytes of either wild-type or Hint2−/− mice; we found that Hint2 accelerates Ca2+ pumping into mitochondria. We then resorted to computational modeling to elucidate the possible molecular target of Hint2 that could explain both observations. On the basis of a detailed model for mitochondrial metabolism proposed in another study, we identified the respiratory chain as the most probable target of Hint2. We then used the model to predict that the absence of Hint2 leads to a premature opening of the mitochondrial permeability transition pore in response to repetitive additions of Ca2+ in suspensions of mitochondria. This prediction was then confirmed experimentally.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The intracellular parasite Theileria parva transforms bovine T-lymphocytes, inducing uncontrolled proliferation. Upon infection, cells cease to require antigenic stimulation and exogenous growth factors to proliferate. Earlier studies have shown that pathways triggered via stimulation of the T-cell receptor are silent in transformed cells. This is reflected by a lack of phosphorylation of key signalling molecules and the fact that proliferation is not inhibited by immunosuppressants such as cyclosporin and ascomycin that target calcineurin. This suggests that the parasite bypasses the normal T-cells activation pathways to induce proliferation. Among the MAP-kinase pathways, ERK and p38 are silent, and only Jun N-terminal kinase is activated. This appears to suffice to induce constitutive activation of the transcription factor AP-1. More recently, it could be shown that the presence of the parasite in the host cell cytoplasm also induces constitutive activation of NF-kappaB, a transcription factor involved in proliferation and protection against apoptosis. Activation is effectuated by parasite-induced degradation of IkappaBs, the cytoplasmic inhibitors which sequester NF-kappaB in the cytoplasm. NF-kappaB activation is resistant to the antioxidant N-acetyl cysteine and a range of other reagents, suggesting that activation might occur in an unorthodox manner. Studies using inhibitors and dominant negative mutants demonstrate that the parasite activates a NF-kappaB-dependent anti-apoptotic mechanism that protects the transformed cell form spontaneous apoptosis and is essential for maintaining the transformed state of the parasitised cell.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Somatostatin analogs that activate the somatostatin subtype 2A (sst2A) receptor are used to treat neuroendocrine cancers because they inhibit tumor secretion and growth. Recently, new analogs capable of activating multiple somatostatin receptor subtypes have been developed to increase tumor responsiveness. We tested two such multi-somatostatin analogs for functional selectivity at the sst2A receptor: SOM230, which activates sst1, sst2, sst3, and sst5 receptors, and KE108, which activates all sst receptor subtypes. Both compounds are reported to act as full agonists at their target sst receptors. In sst2A-expressing HEK293 cells, somatostatin inhibited cAMP production, stimulated intracellular calcium accumulation, and increased ERK phosphorylation. SOM230 and KE108 were also potent inhibitors of cAMP accumulation, as expected. However, they antagonized somatostatin stimulation of intracellular calcium and behaved as partial agonists/antagonists for ERK phosphorylation. In pancreatic AR42J cells, which express sst2A receptors endogenously, SOM230 and KE108 were both full agonists for cAMP inhibition. However, although somatostatin increased intracellular calcium and ERK phosphorylation, SOM230 and KE108 again antagonized these effects. Distinct mechanisms were involved in sst2A receptor signaling in AR42J cells; pertussis toxin pretreatment blocked somatostatin inhibition of cAMP accumulation but not the stimulation of intracellular calcium and ERK phosphorylation. Our results demonstrate that SOM230 and KE108 behave as agonists for inhibition of adenylyl cyclase but antagonize somatostatin's actions on intracellular calcium and ERK phosphorylation. Thus, SOM230 and KE108 are not somatostatin mimics, and their functional selectivity at sst2A receptors must be considered in clinical applications where it may have important consequences for therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recently we demonstrated that human mast cells (MC) express functional TRAIL death receptors. Here we assessed the expression of TRAIL on both mRNA and protein level in cord blood derived MC (CBMC) and HMC-1. The TRAIL release either spontaneous or induced by LPS, IFN-gamma and IgE-dependent activation, was evaluated as well. The protein location was restricted to the intracellular compartment in CBMC, but not in HMC-1. The intracellular TRAIL was not localized inside the granules. The treatment with IFN-gamma and LPS up-regulated intracellular TRAIL expression in CBMC, but did not induce its release. These in vitro data show that human MC can produce and express intracellular TRAIL whose location could not be altered by different stimuli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to understand how nanoparticles (NPs <100 nm) interact with cellular systems, potentially causing adverse effects, it is important to be able to detect and localize them within cells. Due to the small size of NPs, transmission electron microscopy (TEM) is an appropriate technique to use for visualizing NPs inside cells, since light microscopy fails to resolve them at a single particle level. However, the presence of other cellular and non-cellular nano-sized structures in TEM cell samples, which may resemble NPs in size, morphology and electron density, can obstruct the precise intracellular identification of NPs. Therefore, elemental analysis is recommended to confirm the presence of NPs inside the cell. The present study highlights the necessity to perform elemental analysis, specifically energy filtering TEM, to confirm intracellular NP localization using the example of quantum dots (QDs). Recently, QDs have gained increased attention due to their fluorescent characteristics, and possible applications for biomedical imaging have been suggested. Nevertheless, potential adverse effects cannot be excluded and some studies point to a correlation between intracellular particle localization and toxic effects. J774.A1 murine macrophage-like cells were exposed to NH2 polyethylene (PEG) QDs and elemental co-localization analysis of two elements present in the QDs (sulfur and cadmium) was performed on putative intracellular QDs with electron spectroscopic imaging (ESI). Both elements were shown on a single particle level and QDs were confirmed to be located inside intracellular vesicles. Nevertheless, ESI analysis showed that not all nano-sized structures, initially identified as QDs, were confirmed. This observation emphasizes the necessity to perform elemental analysis when investigating intracellular NP localization using TEM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Iron-platinum nanoparticles embedded in a poly(methacrylic acid) (PMA) polymer shell and fluorescently labeled with the dye ATTO 590 (FePt-PMA-ATTO-2%) are investigated in terms of their intracellular localization in lung cells and potential to induce a proinflammatory response dependent on concentration and incubation time. A gold core coated with the same polymer shell (Au-PMA-ATTO-2%) is also included. Using laser scanning and electron microscopy techniques, it is shown that the FePt-PMA-ATTO-2% particles penetrate all three types of cell investigated but to a higher extent in macrophages and dendritic cells than epithelial cells. In both cell types of the defense system but not in epithelial cells, a particle-dose-dependent increase of the cytokine tumor necrosis factor alpha (TNFalpha) is found. By comparing the different nanoparticles and the mere polymer shell, it is shown that the cores combined with the shells are responsible for the induction of proinflammatory effects and not the shells alone. It is concluded that the uptake behavior and the proinflammatory response upon particle exposure are dependent on the time, cell type, and cell culture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

C-type lectin domain family 5, member A (CLEC5A), also known as myeloid DNAX activation protein 12 (DAP12)-associating lectin-1 (MDL-1), is a cell surface receptor strongly associated with the activation and differentiation of myeloid cells. CLEC5A associates with its adaptor protein DAP12 to activate a signaling cascade resulting in activation of downstream kinases in inflammatory responses. Currently, little is known about the transcriptional regulation of CLEC5A. We identified CLEC5A as one of the most highly induced genes in a microarray gene profiling experiment of PU.1 restored myeloid PU.1-null cells. We further report that CLEC5A expression is significantly reduced in several myeloid differentiation models upon PU.1 inhibition during monocyte/macrophage or granulocyte differentiation. In addition, CLEC5A mRNA expression was significantly lower in primary acute myeloid leukemia (AML) patient samples than in macrophages and granulocytes from healthy donors. Moreover, we found activation of a CLEC5A promoter reporter by PU.1 as well as in vivo binding of PU.1 to the CLEC5A promoter. Our findings indicate that CLEC5A expression in monocyte/macrophage and granulocytes is regulated by PU.1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To review blood pressure targets and their implementation in sepsis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to assess a pharmacokinetic algorithm to predict ketamine plasma concentration and drive a target-controlled infusion (TCI) in ponies. Firstly, the algorithm was used to simulate the course of ketamine enantiomers plasma concentrations after the administration of an intravenous bolus in six ponies based on individual pharmacokinetic parameters obtained from a previous experiment. Using the same pharmacokinetic parameters, a TCI of S-ketamine was then performed over 120 min to maintain a concentration of 1 microg/mL in plasma. The actual plasma concentrations of S-ketamine were measured from arterial samples using capillary electrophoresis. The performance of the simulation for the administration of a single bolus was very good. During the TCI, the S-ketamine plasma concentrations were maintained within the limit of acceptance (wobble and divergence <20%) at a median of 79% (IQR, 71-90) of the peak concentration reached after the initial bolus. However, in three ponies the steady concentrations were significantly higher than targeted. It is hypothesized that an inaccurate estimation of the volume of the central compartment is partly responsible for that difference. The algorithm allowed good predictions for the single bolus administration and an appropriate maintenance of constant plasma concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multi-target screening method described in this work allows the simultaneous detection and identification of 700 drugs and metabolites in biological fluids using a hybrid triple-quadrupole linear ion trap mass spectrometer in a single analytical run. After standardization of the method, the retention times of 700 compounds were determined and transitions for each compound were selected by a "scheduled" survey MRM scan, followed by an information-dependent acquisition using the sensitive enhanced product ion scan of a Q TRAP hybrid instrument. The identification of the compounds in the samples analyzed was accomplished by searching the tandem mass spectrometry (MS/MS) spectra against the library we developed, which contains electrospray ionization-MS/MS spectra of over 1,250 compounds. The multi-target screening method together with the library was included in a software program for routine screening and quantitation to achieve automated acquisition and library searching. With the help of this software application, the time for evaluation and interpretation of the results could be drastically reduced. This new multi-target screening method has been successfully applied for the analysis of postmortem and traffic offense samples as well as proficiency testing, and complements screening with immunoassays, gas chromatography-mass spectrometry, and liquid chromatography-diode-array detection. Other possible applications are analysis in clinical toxicology (for intoxication cases), in psychiatry (antidepressants and other psychoactive drugs), and in forensic toxicology (drugs and driving, workplace drug testing, oral fluid analysis, drug-facilitated sexual assault).