17 resultados para intracellular development
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Plasmodium cysteine proteases are essential for host-cell invasion and egress, hemoglobin degradation, and intracellular development of the parasite. The temporal, site-specific regulation of cysteine-protease activity is a prerequisite for survival and propagation of Plasmodium. Recently, a new family of inhibitors of cysteine proteases (ICPs) with homologs in at least eight Plasmodium species has been identified. Here, we report the 2.6 A X-ray crystal structure of the C-terminal, inhibitory domain of ICP from P. berghei (PbICP-C) in a 1:1 complex with falcipain-2, an important hemoglobinase of Plasmodium. The structure establishes Plasmodium ICP as a member of the I42 class of chagasin-like protease inhibitors but with large insertions and differences in the binding mode relative to other family members. Furthermore, the PbICP-C structure explains why host-cell cathepsin B-like proteases and, most likely, also the protease-like domain of Plasmodium SERA5 (serine-repeat antigen 5) are no targets for ICP.
Resumo:
The generation of rodent Plasmodium strains expressing fluorescent proteins in all life cycle stages has had a big impact on malaria research. With this tool in hand, for the first time it was possible to follow in real time by in vivo microscopy the infection route of Plasmodium sporozoites transmitted to the mammalian host by Anopheles mosquitoes. Recently, this work has been extended to the analysis of both hepatocyte infection by Plasmodium sporozoites, as well as liver merozoite transport into blood vessels. The stunning results of these studies have considerably changed our understanding of hepatocyte invasion and parasite liberation. Here, we describe the most important findings of the last years and in addition, we elaborate on the molecular events during the intracellular development of Plasmodium exoerythrocytic forms that give rise to erythrocyte infecting merozoites.
Resumo:
Pulmonary surfactant prevents alveolar collapse via reduction of surface tension. In contrast to human neonates, rats are born with saccular lungs. Therefore, rat lungs serve as a model for investigation of the surfactant system during postnatal alveolar formation. We hypothesized that this process is associated with characteristic structural and biochemical surfactant alterations. We aimed to discriminate changes related to alveolarization from those being either invariable or follow continuous patterns of postnatal changes. Secreted active (mainly tubular myelin (tm)) and inactive (unilamellar vesicles (ulv)) surfactant subtypes as well as intracellular surfactant (lamellar bodies (lb)) in type II pneumocytes (PNII) were quantified before (day (d) 1), during (d 7), at the end of alveolarization (d 14), and after completion of lung maturation (d 42) using electron microscopic methods supplemented by biochemical analyses (phospholipid quantification, immunoblotting for SP-A). Immunoelectron microscopy determined the localization of surfactant protein A (SP-A). (1) At d 1 secreted surfactant was increased relative to d 7-42 and then decreased significantly. (2) Air spaces of neonatal lungs comprised lower fractions of tm and increased ulv, which correlated with low SP-A concentrations in lung lavage fluid (LLF) and increased respiratory rates, respectively. (3) Alveolarization (d 7-14) was associated with decreasing PNII size although volume and sizes of Lb continuously increased. (4) The volume fractions of Lb correlated well with the pool sizes of phospholipids in lavaged lungs. Our study emphasizes differential patterns of developmental changes of the surfactant system relative to postnatal alveolarization.
Resumo:
We present the development of a multifunctional platform equipped with an array of silicon nitride micropipettes with dimensions allowing the implementation of extra- and intracellular operations. Micropipettes with outer diameter that ranges from 6 mum down to 300 nm and with walls thicknesses of 500 down to 150 nm are presented. The generic technology developed to fabricate these micropipettes has a number of advantages, including the ability to be implemented as ion-selective electrodes for (A) intracellular and (B) extracellular recordings and as (C) local drug microdispensers.
Resumo:
The increasing demand for novel anti-parasitic drugs due to resistance formation to well-established chemotherapeutically important compounds has increased the demands for a better understanding of the mechanism(s) of action of existing drugs and of drugs in development. While different approaches have been developed to identify the targets and thus mode of action of anti-parasitic compounds, it has become clear that many drugs act not only on one, but possibly several parasite molecules or even pathways. Ideally, these targets are not present in any cells of the host. In the case of apicomplexan parasites, the unique apicoplast, provides a suitable target for compounds binding to DNA or ribosomal RNA of prokaryotic origin. In the case of intracellular pathogens, a given drug might not only affect the pathogen by directly acting on parasite-associated targets, but also indirectly, by altering the host cell physiology. This in turn could affect the parasite development and lead to parasite death. In this review, we provide an overview of strategies for target identification, and present examples of selected drug targets, ranging from proteins to nucleic acids to intermediary metabolism.
Resumo:
The mammalian kidney develops from the ureteric bud and the metanephric mesenchyme. In mice, the ureteric bud invades the metanephric mesenchyme at day E10.5 and begins to branch. The tips of the ureteric bud induce the metanephric mesenchyme to condense and form the cap mesenchyme. Some cells of this cap mesenchyme undergo a mesenchymal-to-epithelial transition and differentiate into renal vesicles, which further develop into nephrons. The developing kidney expresses Fibroblast growth factor (Fgf)1, 7, 8, 9, 10, 12 and 20 and Fgf receptors Fgfr1 and Fgfr2. Fgf7 and Fgf10, mainly secreted by the metanephric mesenchyme, bind to Fgfr2b of the ureteric bud and induce branching. Fgfr1 and Fgfr2c are required for formation of the metanephric mesenchyme, however the two receptors can substitute for one another. Fgf8, secreted by renal vesicles, binds to Fgfr1 and supports survival of cells in the nascent nephrons. Fgf9 and Fgf20, expressed in the metanephric mesenchyme, are necessary to maintain survival of progenitor cells in the cortical region of the kidney. FgfrL1 is a novel member of the Fgfr family that lacks the intracellular tyrosine kinase domain. It is expressed in the ureteric bud and all nephrogenic structures. Targeted deletion of FgfrL1 leads to severe kidney dysgenesis due to the lack of renal vesicles. FgfrL1 is known to interact mainly with Fgf8. It is therefore conceivable that FgfrL1 restricts signaling of Fgf8 to the precise location of the nascent nephrons. It might also promote tight adhesion of cells in the condensed metanephric mesenchyme as required for the mesenchymal-to-epithelial transition.
Resumo:
Nitazoxanide (2-acetolyloxy-N-(5-nitro 2-thiazolyl) benzamide; NTZ) represents the parent compound of a novel class of broad-spectrum anti-parasitic compounds named thiazolides. NTZ is active against a wide variety of intestinal and tissue-dwelling helminths, protozoa, enteric bacteria and a number of viruses infecting animals and humans. While potent, this poses a problem in practice, since this obvious non-selectivity can lead to undesired side effects in both humans and animals. In this study, we used real time PCR to determine the in vitro activities of 29 different thiazolides (NTZ-derivatives), which carry distinct modifications on both the thiazole- and the benzene moieties, against the tachyzoite stage of the intracellular protozoan Neospora caninum. The goal was to identify a highly active compound lacking the undesirable nitro group, which would have a more specific applicability, such as in food animals. By applying self-organizing molecular field analysis (SOMFA), these data were used to develop a predictive model for future drug design. SOMFA performs self-alignment of the molecules, and takes into account the steric and electrostatic properties, in order to determine 3D-quantitative structure activity relationship models. The best model was obtained by overlay of the thiazole moieties. Plotting of predicted versus experimentally determined activity produced an r2 value of 0.8052 and cross-validation using the "leave one out" methodology resulted in a q2 value of 0.7987. A master grid map showed that large steric groups at the R2 position, the nitrogen of the amide bond and position Y could greatly reduce activity, and the presence of large steric groups placed at positions X, R4 and surrounding the oxygen atom of the amide bond, may increase the activity of thiazolides against Neospora caninum tachyzoites. The model obtained here will be an important predictive tool for future development of this important class of drugs.
Resumo:
Fgfrl1 is a novel member of the fibroblast growth factor receptor family. Its extracellular domain resembles the four conventional Fgfrs, while its intracellular domain lacks the tyrosine kinase domain necessary for Fgf mediated signal transduction. During embryonic development Fgfrl1 is expressed in the musculoskeletal system, in the lung, the pancreas and the metanephric kidney. Targeted disruption of the Fgfrl1 gene leads to the perinatal death of the mice due to a hypoplastic diaphragm, which is unable to inflate the lungs. Here we show that Fgfrl1-/- embryos also fail to develop the metanephric kidney. While the rest of the urogenital system, including bladder, ureter and sexual organs, develops normally, a dramatic reduction of ureteric branching morphogenesis and a lack of mesenchymal-to-epithelial transition in the nephrogenic mesenchyme result in severe renal dysgenesis. The failure of nephron induction might be explained by the absence of the tubulogenic markers Wnt4, Fgf8, Pax8 and Lim1 at E12.5 of the mutant animals. We also observed a loss of Pax2 positive nephron precursor cells and an increase of apoptosis in the cortical zone of the remnant kidney. Fgfrl1 is therefore essential for mesenchymal differentiation in the early steps of nephrogenesis.
Resumo:
Suboptimal dietary zinc (Zn(2+)) intake is increasingly appreciated as an important public health issue. Zn(2+) is an essential mineral, and infants are particularly vulnerable to Zn(2+) deficiency, as they require large amounts of Zn(2+) for their normal growth and development. Although term infants are born with an important hepatic Zn(2+) storage, adequate Zn(2+) nutrition of infants mostly depends on breast milk or formula feeding, which contains an adequate amount of Zn(2+) to meet the infants' requirements. An exclusively breast-fed 6 months old infant suffering from Zn(2+) deficiency caused by an autosomal dominant negative G87R mutation in the Slc30a2 gene (encoding for the zinc transporter 2 (ZnT-2)) in the mother is reported. More than 20 zinc transporters characterized up to date, classified into two families (Slc30a/ZnT and Slc39a/Zip), reflect the complexity and importance of maintaining cellular Zn(2+) homeostasis and dynamics. The role of ZnTs is to reduce intracellular Zn(2+) by transporting it from the cytoplasm into various intracellular organelles and by moving Zn(2+) into extracellular space. Zips increase intracellular Zn(2+) by transporting it in the opposite direction. Thus the coordinated action of both is essential for the maintenance of Zn(2+) homeostasis in the cytoplasm, and accumulating evidence suggests that this is also true for the secretory pathway of growth hormone.
Resumo:
At birth, the mammalian lung is still immature. The alveoli are not yet formed and the interairspace walls contain two capillary layers which are separated by an interstitial core. After alveolarization (first 2 postnatal weeks in rats) the alveolar septa mature: their capillary layers merge, the amount of connective tissue decreases, and the mature lung parenchyma is formed (second and third week). During the first 3 wk of life the role of tissue transglutaminase (tTG) was studied in rat lung by immunostaining of cryostat and paraffin sections, by Northern and Western blotting, and by a quantitative determination of gamma-glutamyl-epsilon-lysine. While enzyme activity and intracellular tTG were already present before term, the enzyme product (gamma-glutamyl-epsilon-lysine-crosslink) and extracellular tTG appeared between postnatal days 10 and 19 in the lung parenchyma. In large blood vessels and large airways, which mature earlier than the parenchyma, both the enzyme product and extracellular tTG had already appeared at the end of the first postnatal week. We conclude that tTG is expressed and externalized into the extracellular matrix of lung shortly before maturation of an organ area. Because tTG covalently and irreversibly crosslinks extracellular matrix proteins, we hypothesize that it may prevent or delay further remodeling of basement membranes and may stabilize other extracellular components, such as microfibrils.
Resumo:
Current models of embryological development focus on intracellular processes such as gene expression and protein networks, rather than on the complex relationship between subcellular processes and the collective cellular organization these processes support. We have explored this collective behavior in the context of neocortical development, by modeling the expansion of a small number of progenitor cells into a laminated cortex with layer and cell type specific projections. The developmental process is steered by a formal language analogous to genomic instructions, and takes place in a physically realistic three-dimensional environment. A common genome inserted into individual cells control their individual behaviors, and thereby gives rise to collective developmental sequences in a biologically plausible manner. The simulation begins with a single progenitor cell containing the artificial genome. This progenitor then gives rise through a lineage of offspring to distinct populations of neuronal precursors that migrate to form the cortical laminae. The precursors differentiate by extending dendrites and axons, which reproduce the experimentally determined branching patterns of a number of different neuronal cell types observed in the cat visual cortex. This result is the first comprehensive demonstration of the principles of self-construction whereby the cortical architecture develops. In addition, our model makes several testable predictions concerning cell migration and branching mechanisms.
Resumo:
FgfrL1 is the fifth member of the fibroblast growth factor receptor (Fgfr) family. Studies with FgfrL1 deficient mice have demonstrated that the gene plays an important role during embryonic development. FgfrL1 knock-out mice die at birth as they have a malformed diaphragm and lack metanephric kidneys. Similar to the classical Fgfrs, the FgfrL1 protein contains an extracellular part composed of three Ig-like domains that interact with Fgf ligands and heparin. However, the intracellular part of FgfrL1 is not related to the classical receptors and does not possess any tyrosine kinase activity. Curiously enough, the amino acid sequence of this domain is barely conserved among different species, with the exception of three motifs, namely a dileucine peptide, a tandem tyrosine-based motif YXXΦ and a histidine-rich sequence. To investigate the function of the intracellular domain of FgfrL1, we have prepared genetically modified mice that lack the three conserved sequence motifs, but instead contain a GFP cassette (FgfrL1ΔC-GFP). To our surprise, homozygous FgfrL1ΔC-GFP knock-in mice are viable, fertile and phenotypically normal. They do not exhibit any alterations in the diaphragm or the kidney, except for a slight reduction in the number of glomeruli that does not appear to affect life expectancy. In addition, the pancreas of both FgfrL1ΔC-GFP knock-in and FgfrL1 knock-out mice do not show any disturbances in the production of insulin, in contrast to what has been suggested by recent studies. Thus, the conserved motifs of the intracellular FgfrL1 domain are dispensable for organogenesis and normal life. We conclude that the extracellular domain of the protein must conduct the vital functions of FgfrL1.
Resumo:
Zinc is an essential micronutrient that is crucial for many vital cellular functions such as DNA and protein synthesis, metabolism, and intracellular signaling. Therefore, the intracellular zinc concentration is tightly regulated by zinc transporters and zinc-binding proteins. The members of the SCL39 transporter family transport zinc into the cytosol. The SLC39A2 (hZIP2) protein is highly expressed in prostate epithelial cells and was found to be involved in prostate cancer development. Thus far, there is no specific modulator available for the SLC39 transporters. The aim of this study was to develop a screening assay for compound screening targeting hZIP2. Employing the pIRES2-DsRed Express 2 bicistronic vector, we detected human ZIP2 expression at the plasma membrane in transiently transfected HEK293 cells. Using the FLIPR Tetra fluorescence plate reader, we demonstrated that ZIP2 transports Cd(2+) with an apparent Km value of 53.96 nM at an extracellular pH of 6.5. The cadmium influx via hZIP2 was inhibited by zinc in a competitive manner. We found that hZIP2 activity can be measured using cadmium in the range of 0.1 to 10 µM with our assay. In summary, for the first time we developed an assay for human ZIP2 that can be adapted to other zinc transporters.
Resumo:
Notch signaling is important in angiogenesis during embryonic development. However, the embryonic lethal phenotypes of knock-out and transgenic mice have precluded studies of the role of Notch post-natally. To develop a mouse model that would bypass the embryonic lethal phenotype and investigate the possible role of Notch signaling in adult vessel growth, we developed transgenic mice with Cre-conditional expression of the constitutively active intracellular domain of Notch1 (IC-Notch1). Double transgenic IC-Notch1/Tie2-Cre embryos with endothelial specific IC-Notch1 expression died at embryonic day 9.5. They displayed collapsed and leaky blood vessels and defects in angiogenesis development. A tetracycline-inducible system was used to express Cre recombinase postnatally in endothelial cells. In adult mice, IC-Notch1 expression inhibited bFGF-induced neovascularization and female mice lacked mature ovarian follicles, which may reflect the block in bFGF-induced angiogenesis required for follicle growth. Our results demonstrate that Notch signaling is important for both embryonic and adult angiogenesis and indicate that the Notch signaling pathway may be a useful target for angiogenic therapies.
Resumo:
The phosphoinositide 3-kinase (PI3K) family of signalling enzymes play a key role in the transduction of signals from activated cell surface receptors controlling cell growth and proliferation, survival, metabolism, and migration. The intracellular signalling pathway from activated receptors to PI3K and its downstream targets v-akt murine thymoma viral oncogene homolog (Akt) and mechanistic target of rapamycin (mTOR) is very frequently deregulated by genetic and epigenetic mechanisms in human cancer, including leukaemia and lymphoma. In the past decade, an arsenal of small molecule inhibitors of key enzymes in this pathway has been developed and evaluated in pre-clinical studies and clinical trials in cancer patients. These include pharmacological inhibitors of Akt, mTOR, and PI3K, some of which are approved for the treatment of leukaemia and lymphoma. The PI3K family comprises eight different catalytic isoforms in humans, which have been subdivided into three classes. Class I PI3K isoforms have been extensively studied in the context of human cancer, and the isoforms p110α and p110δ are validated drug targets. The recent approval of a p110δ-specific PI3K inhibitor (idelalisib/Zydelig®) for the treatment of selected B cell malignancies represents the first success in developing these molecules into anti-cancer drugs. In addition to PI3K inhibitors, mTOR inhibitors are intensively studied in leukaemia and lymphoma, and temsirolimus (Torisel®) is approved for the treatment of a type of lymphoma. Based on these promising results it is hoped that additional novel PI3K pathway inhibitors will in the near future be further developed into new drugs for leukaemia and lymphoma.