53 resultados para intestinal transporter

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Salmonella enterica serovar Typhimurium has long been recognised as a zoonotic pathogen of economic significance in animals and humans. Attempts to protect humans and livestock may be based on immunization with vaccines aimed to induce a protective response. We recently demonstrated that the oral administration of a Salmonella enterica serovar Typhimurium strain unable to synthesize the zinc transporter ZnuABC is able to protect mice against systemic salmonellosis induced by a virulent homologous challenge. This finding suggested that this mutant strain could represent an interesting candidate vaccine for mucosal delivery. In this study, the protective effect of this Salmonella strain was tested in a streptomycin-pretreated mouse model of salmonellosis that is distinguished by the capability of evoking typhlitis and colitis. The here reported results demonstrate that mice immunized with Salmonella enterica serovar Typhimurium (S. Typhimurium) SA186 survive to the intestinal challenge and, compared to control mice, show a reduced number of virulent bacteria in the gut, with milder signs of inflammation. This study demonstrates that the oral administration a of S. Typhimurium strain lacking ZnuABC is able to elicit an effective immune response which protects mice against intestinal S. Typhimurium infection. These results, collectively, suggest that the streptomycin-pretreated mouse model of S. typhimurium infection can represent a valuable tool to screen S. typhimurium attenuated mutant strains and potentially help to assess their protective efficacy as potential live vaccines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The H(+) -coupled divalent metal-ion transporter DMT1 serves as both the primary entry point for iron into the body (intestinal brush-border uptake) and the route by which transferrin-associated iron is mobilized from endosomes to cytosol in erythroid precursors and other cells. Elucidating the molecular mechanisms of DMT1 will therefore increase our understanding of iron metabolism and the etiology of iron overload disorders. We expressed wild type and mutant DMT1 in Xenopus oocytes and monitored metal-ion uptake, currents and intracellular pH. DMT1 was activated in the presence of an inwardly directed H(+) electrochemical gradient. At low extracellular pH (pH(o)), H(+) binding preceded binding of Fe(2+) and its simultaneous translocation. However, DMT1 did not behave like a typical ion-coupled transporter at higher pH(o), and at pH(o) 7.4 we observed Fe(2+) transport that was not associated with H(+) influx. His(272) --> Ala substitution uncoupled the Fe(2+) and H(+) fluxes. At low pH(o), H272A mediated H(+) uniport that was inhibited by Fe(2+). Meanwhile H272A-mediated Fe(2+) transport was independent of pH(o). Our data indicate (i) that H(+) coupling in DMT1 serves to increase affinity for Fe(2+) and provide a thermodynamic driving force for Fe(2+) transport and (ii) that His-272 is critical in transducing the effects of H(+) coupling. Notably, our data also indicate that DMT1 can mediate facilitative Fe(2+) transport in the absence of a H(+) gradient. Since plasma membrane expression of DMT1 is upregulated in liver of hemochromatosis patients, this H(+) -uncoupled facilitative Fe(2+) transport via DMT1 can account for the uptake of nontransferrin-bound plasma iron characteristic of iron overload disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

DMT1 (divalent metal-ion transporter 1) is a widely expressed metal-ion transporter that is vital for intestinal iron absorption and iron utilization by most cell types throughout the body, including erythroid precursors. Mutations in DMT1 cause severe microcytic anaemia in animal models. Four DMT1 isoforms that differ in their N- and C-termini arise from mRNA transcripts that vary both at their 5'-ends (starting in exon 1A or exon 1B) and at their 3'-ends giving rise to mRNAs containing (+) or lacking (-) the 3'-IRE (iron-responsive element) and resulting in altered C-terminal coding sequences. To determine whether these variations result in functional differences between isoforms, we explored the functional properties of each isoform using the voltage clamp and radiotracer assays in cRNA-injected Xenopus oocytes. 1A/IRE+-DMT1 mediated Fe2+-evoked currents that were saturable (K(0.5)(Fe) approximately 1-2 microM), temperature-dependent (Q10 approximately 2), H+-dependent (K(0.5)(H) approximately 1 muM) and voltage-dependent. 1A/IRE+-DMT1 exhibited the provisional substrate profile (ranked on currents) Cd2+, Co2+, Fe2+, Mn2+>Ni2+, V3+>>Pb2+. Zn2+ also evoked large currents; however, the zinc-evoked current was accounted for by H+ and Cl- conductances and was not associated with significant Zn2+ transport. 1B/IRE+-DMT1 exhibited the same substrate profile, Fe2+ affinity and dependence on the H+ electrochemical gradient. Each isoform mediated 55Fe2+ uptake and Fe2+-evoked currents at low extracellular pH. Whereas iron transport activity varied markedly between the four isoforms, the activity for each correlated with the density of anti-DMT1 immunostaining in the plasma membrane, and the turnover rate of the Fe2+ transport cycle did not differ between isoforms. Therefore all four isoforms of human DMT1 function as metal-ion transporters of equivalent efficiency. Our results reveal that the N- and C-terminal sequence variations among the DMT1 isoforms do not alter DMT1 functional properties. We therefore propose that these variations serve as tissue-specific signals or cues to direct DMT1 to the appropriate subcellular compartments (e.g. in erythroid cells) or the plasma membrane (e.g. in intestine).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vitamin C (L-ascorbic acid) is an essential micronutrient that serves as an antioxidant and as a cofactor in many enzymatic reactions. Intestinal absorption and renal reabsorption of the vitamin is mediated by the epithelial apical L-ascorbic acid cotransporter SVCT1 (SLC23A1). We explored the molecular mechanisms of SVCT1-mediated L-ascorbic acid transport using radiotracer and voltage-clamp techniques in RNA-injected Xenopus oocytes. L-ascorbic acid transport was saturable (K(0.5) approximately 70 microM), temperature dependent (Q(10) approximately 5), and energized by the Na(+) electrochemical potential gradient. We obtained a Na(+)-L-ascorbic acid coupling ratio of 2:1 from simultaneous measurement of currents and fluxes. L-ascorbic acid and Na(+) saturation kinetics as a function of cosubstrate concentrations revealed a simultaneous transport mechanism in which binding is ordered Na(+), L-ascorbic acid, Na(+). In the absence of L-ascorbic acid, SVCT1 mediated pre-steady-state currents that decayed with time constants 3-15 ms. Transients were described by single Boltzmann distributions. At 100 mM Na(+), maximal charge translocation (Q(max)) was approximately 25 nC, around a midpoint (V(0.5)) at -9 mV, and with apparent valence approximately -1. Q(max) was conserved upon progressive removal of Na(+), whereas V(0.5) shifted to more hyperpolarized potentials. Model simulation predicted that the pre-steady-state current predominantly results from an ion-well effect on binding of the first Na(+) partway within the membrane electric field. We present a transport model for SVCT1 that will provide a framework for investigating the impact of specific mutations and polymorphisms in SLC23A1 and help us better understand the contribution of SVCT1 to vitamin C metabolism in health and disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although tumor necrosis factor (alpha) (TNF) exerts proinflammatory activities in a variety of diseases, including inflammatory bowel disease, there is increasing evidence for antiinflammatory actions of TNF. In contrast, glucocorticoids (GCs) are steroid hormones that suppress inflammation, at least in part by regulating the expression and action of TNF. We report that TNF induces extraadrenal production of immunoregulatory GCs in the intestinal mucosa during acute intestinal inflammation. The absence of TNF results in a lack of colonic GC synthesis and exacerbation of dextran sodium sulfate-induced colitis. TNF seems to promote local steroidogenesis by directly inducing steroidogenic enzymes in intestinal epithelial cells. Therapeutic administration of TNF induces GC synthesis in oxazolone-induced colitis and ameliorates intestinal inflammation, whereas inhibition of intestinal GC synthesis abrogates the therapeutic effect of TNF. These data show that TNF suppresses the pathogenesis of acute intestinal inflammation by promoting local steroidogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stringent control of immune responses in the intestinal mucosa is critical for the maintenance of immune homeostasis and prevention of tissue damage, such as observed during inflammatory bowel disease. Intestinal epithelial cells, primarily thought to form a simple physical barrier, critically regulate intestinal immune cell functions by producing immunoregulatory glucocorticoids on T-cell activation. In this study we investigated whether stimulation of cells of the innate immune system results in the induction of intestinal glucocorticoids synthesis and what role TNF-alpha plays in this process. Stimulation of the innate immune system with lipopolysaccharide (LPS) led to an up-regulation of colonic steroidogenic enzymes and the induction of intestinal glucocorticoid synthesis. The observed induction was dependent on macrophage effector functions, as depletion of macrophages using clodronate-containing liposomes, but not absence of T and B cells, inhibited intestinal glucocorticoid synthesis. LPS-induced glucocorticoid synthesis was critically dependent on TNF-alpha as it was significantly decreased in TNF-alpha-deficient animals. Both TNF receptor-1 and -2 were found to be equally involved in LPS- and T-cell-induced intestinal GC synthesis. These results describe a novel and critical role of TNF-alpha in immune cell-induced intestinal glucocorticoid synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Humans harbour nearly 100 trillion intestinal bacteria that are essential for health. Millions of years of co-evolution have moulded this human-microorganism interaction into a symbiotic relationship in which gut bacteria make essential contributions to human nutrient metabolism and in return occupy a nutrient-rich environment. Although intestinal microorganisms carry out essential functions for their hosts, they pose a constant threat of invasion owing to their sheer numbers and the large intestinal surface area. In this Review, we discuss the unique adaptations of the intestinal immune system that maintain homeostatic interactions with a diverse resident microbiota.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The intestinal ecosystem is formed by a complex, yet highly characteristic microbial community. The parameters defining whether this community permits invasion of a new bacterial species are unclear. In particular, inhibition of enteropathogen infection by the gut microbiota ( = colonization resistance) is poorly understood. To analyze the mechanisms of microbiota-mediated protection from Salmonella enterica induced enterocolitis, we used a mouse infection model and large scale high-throughput pyrosequencing. In contrast to conventional mice (CON), mice with a gut microbiota of low complexity (LCM) were highly susceptible to S. enterica induced colonization and enterocolitis. Colonization resistance was partially restored in LCM-animals by co-housing with conventional mice for 21 days (LCM(con21)). 16S rRNA sequence analysis comparing LCM, LCM(con21) and CON gut microbiota revealed that gut microbiota complexity increased upon conventionalization and correlated with increased resistance to S. enterica infection. Comparative microbiota analysis of mice with varying degrees of colonization resistance allowed us to identify intestinal ecosystem characteristics associated with susceptibility to S. enterica infection. Moreover, this system enabled us to gain further insights into the general principles of gut ecosystem invasion by non-pathogenic, commensal bacteria. Mice harboring high commensal E. coli densities were more susceptible to S. enterica induced gut inflammation. Similarly, mice with high titers of Lactobacilli were more efficiently colonized by a commensal Lactobacillus reuteri(RR) strain after oral inoculation. Upon examination of 16S rRNA sequence data from 9 CON mice we found that closely related phylotypes generally display significantly correlated abundances (co-occurrence), more so than distantly related phylotypes. Thus, in essence, the presence of closely related species can increase the chance of invasion of newly incoming species into the gut ecosystem. We provide evidence that this principle might be of general validity for invasion of bacteria in preformed gut ecosystems. This might be of relevance for human enteropathogen infections as well as therapeutic use of probiotic commensal bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mammals contain an enormous load of commensal microbes in the lower intestine, which induce adaptive responses in the host immune system that ensure mutual coexistence of the host and its microbial passengers. The main way of studying how the host responds to commensal colonization has been to compare animals kept in entirely germ-free conditions and their colonized counterparts. We present an overview of our development of a reversible colonization system, whereby germ free animals can be treated with live commensal bacteria that do not persist in the host, so it becomes germ free again. We describe how this system has been used to demonstrate that there is little or no immune memory for specific IgA induction in the intestinal mucosal immune system by commensal intestinal bacteria.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Garlic extracts have been shown to decrease drug exposure for saquinavir, a P-glycoprotein and cytochrome P450 3A4 substrate. In order to explore the underlying mechanisms and to study the effects of garlic on pre-systemic drug elimination, healthy volunteers were administered garlic extract for 21 days. Prior to and at the end of this period, expression of duodenal P-glycoprotein and cytochrome P450 3A4 protein were assayed and normalized to villin, while hepatic cytochrome P450 3A4 function and simvastatin, pravastatin and saquinavir pharmacokinetics were also evaluated. Ingestion of garlic extract increased expression of duodenal P-glycoprotein to 131% (95% CI, 105-163%), without increasing the expression of cytochrome P450 3A4 which amounted to 87% (95% CI, 67-112%), relative to baseline in both cases. For the erythromycin breath test performed, the average result was 96% (95% CI, 83-112%). Ingestion of garlic extract had no effect on drug and metabolite AUCs following a single dose of simvastatin or pravastatin, although the average area under the plasma concentration curve (AUC) of saquinavir decreased to 85% (95% CI, 66-109%), and changes in intestinal P-glycoprotein expression negatively correlated with this change. In conclusion, garlic extract induces intestinal expression of P-glycoprotein independent of cytochrome P450 3A4 in human intestine and liver.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A variety of conformationally constrained aspartate and glutamate analogues inhibit the glutamate transporter 1 (GLT-1, also known as EAAT2). To expand the search for such analogues, a virtual library of aliphatic aspartate and glutamate analogues was generated starting from the chemical universe database GDB-11, which contains 26.4 million possible molecules up to 11 atoms of C, N, O, F, resulting in 101026 aspartate analogues and 151285 glutamate analogues. Virtual screening was realized by high-throughput docking to the glutamate binding site of the glutamate transporter homologue from Pyrococcus horikoshii (PDB code: 1XFH ) using Autodock. Norbornane-type aspartate analogues were selected from the top-scoring virtual hits and synthesized. Testing and optimization led to the identification of (1R*,2R*,3S*,4R*,6R*)-2-amino-6-phenethyl-bicyclo[2.2.1]heptane-2,3-dicarboxylic acid as a new inhibitor of GLT-1 with IC(50) = 1.4 ?M against GLT-1 and no inhibition of the related transporter EAAC1. The systematic diversification of known ligands by enumeration with help of GDB followed by virtual screening, synthesis, and testing as exemplified here provides a general strategy for drug discovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy-dependent intestinal calcium absorption is important for the maintenance of calcium and bone homeostasis, especially when dietary calcium supply is restricted. The active form of vitamin D, 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)], is a crucial regulator of this process and increases the expression of the transient receptor potential vanilloid 6 (Trpv6) calcium channel that mediates calcium transfer across the intestinal apical membrane. Genetic inactivation of Trpv6 in mice (Trpv6(-/-)) showed, however, that TRPV6 is redundant for intestinal calcium absorption when dietary calcium content is normal/high and passive diffusion likely contributes to maintain normal serum calcium levels. On the other hand, Trpv6 inactivation impaired the increase in intestinal calcium transport following calcium restriction, however without resulting in hypocalcemia. A possible explanation is that normocalcemia is maintained at the expense of bone homeostasis, a hypothesis investigated in this study. In this study, we thoroughly analyzed the bone phenotype of Trpv6(-/-) mice receiving a normal (approximately 1%) or low (approximately 0.02%) calcium diet from weaning onwards using micro-computed tomography, histomorphometry and serum parameters. When dietary supply of calcium is normal, Trpv6 inactivation did not affect growth plate morphology, bone mass and remodeling parameters in young adult or aging mice. Restricting dietary calcium had no effect on serum calcium levels and resulted in a comparable reduction in bone mass accrual in Trpv6(+/+) and Trpv6(-/-) mice (-35% and 45% respectively). This decrease in bone mass was associated with a similar increase in bone resorption, whereas serum osteocalcin levels and the amount of unmineralized bone matrix were only significantly increased in Trpv6(-/-) mice. Taken together, our findings indicate that TRPV6 contributes to intestinal calcium transport when dietary calcium supply is limited and in this condition indirectly regulates bone formation and/or mineralization.