2 resultados para integral approach
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Epileptic seizures are due to the pathological collective activity of large cellular assemblies. A better understanding of this collective activity is integral to the development of novel diagnostic and therapeutic procedures. In contrast to reductionist analyses, which focus solely on small-scale characteristics of ictogenesis, here we follow a systems-level approach, which combines both small-scale and larger-scale analyses. Peri-ictal dynamics of epileptic networks are assessed by studying correlation within and between different spatial scales of intracranial electroencephalographic recordings (iEEG) of a heterogeneous group of patients suffering from pharmaco-resistant epilepsy. Epileptiform activity as recorded by a single iEEG electrode is determined objectively by the signal derivative and then subjected to a multivariate analysis of correlation between all iEEG channels. We find that during seizure, synchrony increases on the smallest and largest spatial scales probed by iEEG. In addition, a dynamic reorganization of spatial correlation is observed on intermediate scales, which persists after seizure termination. It is proposed that this reorganization may indicate a balancing mechanism that decreases high local correlation. Our findings are consistent with the hypothesis that during epileptic seizures hypercorrelated and therefore functionally segregated brain areas are re-integrated into more collective brain dynamics. In addition, except for a special sub-group, a highly significant association is found between the location of ictal iEEG activity and the location of areas of relative decrease of localised EEG correlation. The latter could serve as a clinically important quantitative marker of the seizure onset zone (SOZ).
Evolutionary demography of long-lived monocarpic perennials: a time-lagged integral projection model
Resumo:
1. The evolution of flowering strategies (when and at what size to flower) in monocarpic perennials is determined by balancing current reproduction with expected future reproduction, and these are largely determined by size-specific patterns of growth and survival. However, because of the difficulty in following long-lived individuals throughout their lives, this theory has largely been tested using short-lived species (< 5 years). 2. Here, we tested this theory using the long-lived monocarpic perennial Campanula thyrsoides which can live up to 16 years. We used a novel approach that combined permanent plot and herb chronology data from a 3-year field study to parameterize and validate integral projection models (IPMs). 3. Similar to other monocarpic species, the rosette leaves of C. thyrsoides wither over winter and so size cannot be measured in the year of flowering. We therefore extended the existing IPM framework to incorporate an additional time delay that arises because flowering demography must be predicted from rosette size in the year before flowering. 4. We found that all main demographic functions (growth, survival probability, flowering probability and fecundity) were strongly size-dependent and there was a pronounced threshold size of flowering. There was good agreement between the predicted distribution of flowering ages obtained from the IPMs and that estimated in the field. Mostly, there was good agreement between the IPM predictions and the direct quantitative field measurements regarding the demographic parameters lambda, R-0 and T. We therefore conclude that the model captures the main demographic features of the field populations. 5. Elasticity analysis indicated that changes in the survival and growth function had the largest effect (c. 80%) on lambda and this was considerably larger than in short-lived monocarps. We found only weak selection pressure operating on the observed flowering strategy which was close to the predicted evolutionary stable strategy. 6. Synthesis. The extended IPM accurately described the demography of a long-lived monocarpic perennial using data collected over a relatively short period. We could show that the evolution of flowering strategies in short- and long-lived monocarps seem to follow the same general rules but with a longevity-related emphasis on survival over fecundity.